COMMENTI di P. Pistoia (premessa), P.F. Bianchi e F. Gherardini ALLA POESIA “LA SOLITA ONDA”, postata, insieme ad altre 13, anche nel post “Poesie di caccia e Natura”; a cura di Piero Pistoia

Caro Francesco Gherardini,

mi piacerebbe che tu leggessi il mio commento alla poesiola allegata, “La solita onda”, quando hai un po’ di tempo e voglia, che vorrebbe tentare di “trasferire” l’onda iniziale umana, descritta all’inizio, a l’intero l’Universo . . . tramite un linguaggio simbolico inventato e criptico trasferendo simboli dalla mitologia, dalla paleontologia e altro, modificando in qualche modo i significati, Se scriverai qualcosa (in positivo o in negativo), come ha fatto il nostro amministratore Pier Francesco (leggere sopra), ti ringrazio in anticipo.

pieropistoia

LA SOLITA ONDA -> LA FILOSOFIA -> LA SCIENZA -> L’UNIVERSO

UN PREGEVOLE E POETICO SALTO!!

Del dott. prof. Francesco Gherardini

DOTT. PROF. FRANCESCO GHERARDINI

RACCONTI DI INGIUSTIZIE DI VITA – scritti del dott. Piero Pistoia; con commenti dei docenti Andrea Pazzagli e Pier Francesco Bianchi

PREMESSA ai versi di satira irriverente di Piero Pistoia

con lettera-commento-consigli dell’insegnante Andrea Pazzagli e mail-commento dell’insegnante Pier Francesco Bianchi (Amministratore del blog)

PERCHE’ UNO SCRITTO SUL ‘SARCASMO DI PIAZZA’ SULL’ESEMPIO DEL CELEBRE PASQUINO, LA STATUA “PARLANTE” DEL PERIODO ELLENISTA (III sec. a.C. n.) ?

La decisione di scrivere con rabbia qualcosa sul Sarcasmo di Piazza nasce in particolare da due situazioni, personali secondo interpretazioni soggettive del sottoscritto, simultanee negative che, in sinergia, mi crearono un forte disagio interno. La prima situazione, se risolta, in qualche modo avrebbe riparato e o mitigato una sconfortevole seconda situazione psicologica che, come accenna Andrea Pazzagli nella sua lettera-commento, messo al centro del post, leggibile sotto, si situa al livello “di un punto di vista violentemente antropocentrico”.

Prima situazione – Un particolare evento relativo ad un fantasioso editto su come costruire i giardinetti di paese che in pratica non avrebbe permesso, con spiate di controllo, di trasformare arbusti mediterranei al nostro confine, in grandi alberi (praticamente si voleva conformare il paese in zone condominiali) e fu la goccia che fece traboccare il vaso! Questo anche per rispettare le raccomandazione europee di arricchire anche i giardini privati di grandi alberi. Ma specialmente perché, a mio avviso, un giardino circondato da grandi alberi, anche trasformati da cespugli o arbusti, è un primo passo del procedere verso la costruzione di “posti” per gli dèi, cioè zone magiche e sacre che aiutano a spengere i dolori e le ingiustizie della vita.

Seconda situazione – Un background che attraversa tutta la mia vita lavorativa e non solo e dura tutt’oggi, una situazione psicologica, pesante dentro, che derivava da aver sopportato, nella mia percezione, per molto tempo un perverso e complesso mobbing a varie vie, costruendo anche fatti ad hoc progettando trappole – come far leggere, per criticare, i miei scritti didattici (schede, questionari, appunti…alcuni di questi scritti sono riportati in questo blog) a colleghi meno qualificati, scritti miei questi ultimi spesso pubblicati su riviste scientifiche a direzione accademica! . . .e molto altro ancora più penoso – mobbing (a varie vie), dicevo, promosso da un gruppetto stabile di ‘brave persone’ sedicenti colonne della scuola e della cultura (sic!), in un ambiente di lavoro di molti pendolari, con attacchi, anche sarcastici, gratuiti dietro le spalle solamente e senza possibilità di difesa, e quando capitava, con corrispondenti malevolenze su di me, sia interne all’ambiente stesso (genitori, alunni e, nel tempo, perfino docenti pendolari, nuovi presidi, pure pendolari, persone dell’Usl e del provveditorato, persino ispettori . . .), sia sulla piazza, a colpi di sarcasmo, in questo caso da parte di ceffi piazzaioli di zona, sul falso costruito ad hoc, opportunamente informati. Come quando – nel contempo ero stato nominato preside incaricato dell’Istituto – detti il permesso ad alcuni alunni di entrare 10 minuti più tardi (necessario per accordi con l’azienda dei trasporti), passando vicino ad una porta sentii qualcuno che contattava il provveditorato denunciando, con voce eccitata, questa mia decisione; ma, questa volta, sentii chiaramente, dalla risposta quasi urlata, che gli fu sbattuta , come si dice, la porta in faccia. Potrei continuare a narrare di flake news, senza alcun intervento di fatto, naturalmente!!! O quando sentii il solito gruppetto, venendo a sapere di una mia probabile nomina a preside incaricato, consigliare ad un altro insegnante, una persona corretta e di valore (questa volta!), di intervenire presso il provveditorato per impedire la nomina; chiaramente l’altro affermò con forza che non voleva essere in nessun modo coinvolto in questa tresca meschina. Per non parlare di molte altre svariate accuse studiate ad hoc, con astio, sempre gratuite, appiccicandomi addosso etichette che non sono le mie e non lo sono mai state!. . . .e sappiamo tutti che cosa accade se passano di bocca in bocca….Per andare avanti, però, bisognava stringere i denti, sopportare e dare concorsi su quasi tutte le discipline scientifiche e vincerli! cosa che, a denti stretti, io ho fatto; non cosa da poco a quel tempo, dove era quasi impossibile superarli, prima dei famigerati corsi abilitanti, superati da tutti, e molto altro ancora a mio favore (per es., anche pubblicazioni di svariate decine di miei articoli scientifici e didattici in riviste a direzione universitaria e diffusione nazionale e, . . . alla frontiera della scuola. . . preparazione accurata delle lezioni con appunti e questionari corretti in classe e a più riprese risomministrati, ri-spiegazioni all’infinito e molti alunni consapevoli, ormai uomini, se le ricordano ancora, interazioni dirette con gli alunni e fra gli alunni (Bruner) per facilitare l’apprendimento in classe . . . vedere curriculum dell’autore e alcuni suoi scritti in questo blog).

L’autore fu iscritto all’albo professionale dei docenti di provincia (PI) per l’insegnamento in qualunque Scuola Secondaria Superiore, di praticamente tutte le discipline scientifiche, come da certificazione posseduta.

Leggere anche l’ “EPILOGO” nel post “Quarant’anni all’ITIS di Pomarance” scritto dalla prof.ssa Ivana Rossi

Però quando fu il tempo di andare in pensione, non avevo più denti da stringere per dare il concorso a preside!!! anche se a lungo preparato. Ma, se crediamo alla teoria della “Profezia che si auto-adempie”, mi sono conquistato, in compenso, con la mia determinazione, ma, in special modo, con gli stimoli, la stima e l’affetto e la comprensione della mia grande compagna della vita, Gabriella Scarciglia – che ha contribuito anche a mantenere unita e in buono stato la nostra famiglia, fino ad ora, per ben 57 anni! e 58 il nove gennaio 2014 – mi sono conquistato, dicevo, delle belle “s-palle-quadrate” e sono ancora in azione, anche se con un po’ d’amaro in bocca, ormai senza denti . . . da stringere! 

Oggi quasi al termine della vita (più di 86 anni), infatti, finalmente sono riuscito a circondarmi da cespugli e arbusti della macchia mediterranea diventati veri alberi giganti (Rhamnus alaternus, Viburnum tinus, Pistacea lentiscus, la Phyllirea angustipholia (Lillatro), l’antico migrato dal nord Laurus nobilis ed altre specie ospitate come Prunus laucerasus, . . naturalmente anche con alberi già esistenti cipressi, tigli e lecci, l’acero ‘trilobo’ e altri alberi importati da lontano. Oggi, all’inizio (da via del Poderino) della strada Don Mazzolari, proprio davanti al nostro muro verde, sembra affacciarsi (lo spero) anche qualcosa di simile a riformare “due argini di verde, liberi, a fare anima”, e, proprio oggi, ormai vecchio, ho ripercorso nella mente la storia di questo sofferente scritto, vedere dopo, forse al limite della poesia, modificandolo per l’ultima volta. La fine della storia avverrà però quando avremo terminato la costruzione del nostro giardino dove gli dei, nella mia mente, saranno tornati a mitigare, per poi spengere, rabbie e sofferenze per noi.

Da continuare….

LA LETTERA_COMMENTO_CONSIGLI

dell’insegnante Pazzagli

PRIMO GIUGNO A POMARANCE

IL SARCASMO DI PIAZZA

Versi di satira irriverente di Piero Pistoia, suggerita da un personale sentire

Breve libello in risposta al tacito ‘Editto condominiale esteso’ per uniformare i giardinetti di paese

————————————————–

Sono a Pomarance tutto il giorno oggi.

In via Mazzolari due argini di verde.

Liberi a fare anima.

Gli uomini piccoli ricamano geometrie

in giardini pelati rapati costretti.

Come le idee. Quelle loro. Naturalmente.

Macchia mare cielo rispettano forme!

non geometrie.

Galileo aveva forse torto!? (1)

Ma qualcuno farà la spia. Certamente.

In questo paese. Anche sul nulla.

Più che altrove. Forse.

Vedere qualsiasi sia è confermare (2).

In questo paese ideatore di Etica.

Col sarcasmo di piazza.

Ricòniugano, sempre a colpa,

parole e atteggiamenti.

Il Certo al servizio dell’aspettativa.

Il Vero dell’invidia (3).

La Cultura del potere (4).

La Presunzione della ricchezza.

E giurano :<<La Norma è questa!!!

se non è così si brucia’ i libri!>>:

In chi, assiduo, lo cerca alberga il Male.

In chi lo vede. Spesso.

Più che altrove. Certamente.

Per meno di trenta denari. Molto meno.

Prima che il gallo canti.

Arriverà la guardia femmina con la sola Ragione.

Sua e del Codice. Le è congeniale.

Divino Ermes dove sei nascosto!? (5)

La stagione è avanzata per le piante.

Forse rimanderemo a Settembre.

Non prometto nulla. Farò quello che posso.

In questo ambito senza contesto!

NOTE

  1. Da questi giardinetti gli dei migrano in cerca di ‘posti’ (non geometrie) dove nascondersi e Ermes ne traccia i sentieri, ‘annusando’ il magico e il sacro nella Natura.
  2. Nel processo di conoscenza, non si deve cercare di verificare ipotesi, ma di falsificarle! perché questo è il solo percorso logico verso la Verità, vista come concetto regolativo (K. Popper)
  3. Diventa Vero ciò che ‘inventa’ l’invidia.
  4. Potere è Cultura e indirizza la Cultura ai suoi fini. Ma il Potere non assimila a sé solo la Cultura! Circola in paese uno slogan :“Potere è Podere”. Non so che cosa significhi esattamente. Ma qualcosa significa di sicuro!
  5. Ermes umanizza il dio apollineo (Apollo) della ragione e della bellezza, solari e codificate, fornendo i suoi nuovi codici estetici.

Se vogliamo capire il senso di Posto sacro nei giardini, leggere il Post “Poesie di ‘Cose’ del Mito”. In questo blog.

Ma

“Anche se vieni da altri ferito nulla ti serve a legartela al dito, perché, sovente, chi umilia di più vorrebbe avere le cose che hai tu!!! da GIROSBLOG” e, d’altra parte…”OMNIA MEA MECUM SUNT!” dai LATINI. Inoltre qualcuno ha anche detto “se conosci i tuoi nemici e conosci te stesso supererai tutte le battaglie” e mi viene, da nonno, anche a mente il motto della Folgore (uno dei miei nipoti, dopo 4 anni nella Folgore, vince il concorso, ed ora lavora nella Polizia di Stato): <<VINCE SEMPRE – CHI PIU’ CREDE – E PIU’ A LUNGO SA PATIR>>.

Oggi ripensando a quei piccoli gruppetti di umani “stabili”, nominati all’inizio, di brave persone (si ritengono anche buonisti!) forse non odiano gli altri e neppure soffrono di invidia per essi, ma interagendo con loro, “godono” nel vedere “traballare” la vittima e, rubandoli energia, si sentono aumentare la qualità della propria vita e forse anche la lunghezza. C’è una specie di stornello toscano ad hoc che dice: “Muore la pecora e la cavalla, muore la vacca nella stalla, muore la gente piena di guai, ma i pezzi di merda non muoiono mai” e rimanendo tali per continuare a vivere, si indebolisce anche la possiblità del perdono.

Infine, come ha detto qualcuno, se ti alzi e ti gira la testa, è la pressione; se ti alzi e ti gira tutto storto, è la sfiga; se ti alzi e ti girano i “coglioni” é l‘ INGIUSTIZIA DI VITA. Uno sfogo-opinione personale: Questi buonisti ladri di anime!? la peggiore genìa!!! i quali, se questo fosse il caso, secondo il mio pensiero personale affranto, in una comunità corretta, non avrebbero dovuto essere ascoltati.

In ultimo mi ricordo di un mio grande amico, ingegnere laureato con 110 su 110 e lode di Pomarance, e di grande valore anche umano, che, purtroppo ci la lasciati, quando ci si incontrava a parlare, anche al bar, di problemi fisici da risolvere ed altro, più volte si lamentava che le persone di piazza denigravano spesso gli altri, anche se da questi non avevano mai ricevuto nessuna ingiuria o malevolenza; io, se ben ricordo, risposi pressappoco così, che il problema è legato al girare il cappello, qui si vive tranquilli se riesci a far girare il cappello agli altri, altrimenti sei tu che lo devi girare con rassegnazione; anch’io non sono mai riuscito a far girare il cappello a un altro, ma nemmeno a girarlo davanti a qualcuno!

I precedenti versi della poesia furono fatti leggere, a suo tempo, alla polizia municipale che li approvò

MAIL-COMMENTO Del dott. PIER FRANCESCO BIANCHI (amministratore del blog)

Caro Piero  

Ho letto e riletto il tuo ultimo scritto. Mi sarebbe piaciuto leggere anche le altre poesie del libello come “Al bar di primo mattino”. In questa poesia e nello scritto precedente fai una analisi un po’ della tua vita. Te sempre costretto a fare concorsi , a darti da fare per insegnare nel modo migliore,   mentre altri, penso per invidia, a metterti i bastoni fra le ruote.  Certamente l’ editto sui giardini sarebbe stata una cosa davvero scandalosa, come il comune volesse entrare nella vita privata dei cittadini per dettare le sue leggi.  Nei paesi e in particolare a Pomarance vi sono varie cricche di persone che cercano di fare mobbing su chi non la pensa come loro e certamente come diceva Dante, il modo migliore per vivere e sopravvivere è  “Non ti curar di loro ma guarda e passa”. Nel posto di lavoro certamente queste voci hanno un peso, ma fuori di esso il peso si alleggerisce di molto. Ritrova le tre poesie che hai scritto . Mi farebbe piacere rileggerle.

Un caro saluto

Pier Francesco Bianchi

Curriculum di Piero Pistoia

Vedere in questo blog in altri curriculum dello scrivente.

LA CADUTA DEI GRAVI A PIU’ DI QUATTRO SECOLI DA GALILEO; analisi e significati di alcune sottigliezze nell’insegnamento della fisica e laboratorio al biennio superiore: un metodo di insegnamento; del dott. prof. Piero Pistoia et al.

CURRICULUM DI PIERO PISTOIA :

 

Da rivedere…

LA CADUTA DEI GRAVI A PIU’ DI QUATTRO SECOLI DA GALILEO

Significati, analisi e sottigliezze, con un certo rischio, su alcuni aspetti dell’insegnamento della fisica e laboratorio, al Biennio Superiore; a cura di Piero Pistoia et al.

INTRODUZIONE

Riteniamo giustificato, secondo criteri epistemologici (1), psicologici (2) e didattici (3), un metodo di insegnamento della Fisica, non di tipo induttivista, ma caratterizzato, in generale, da particolari processi ipotetico-deduttivi. E’ da dire, per la verità, che, mentre per la filosofia e la logica tale metodo è falso e quindi da abbandonare, di fatto non lo è sempre per la stessa Scienza operativa e per il senso comune. Nonostante le critiche alla epistemologia popperiana (vedere i post relativi su questo blog) questa filosofia, secondo lo scrivente ed altri, è degna di rispetto perché degnamente si accorda con un insegnamento formativo nella scuola!

Consideriamo altresì che il così detto metodo sperimentale di Galileo, alla luce anche delle ultime interpretazioni del suo pensiero (4), abbia in effetti analoghe caratteristiche.

Secondo tale metodo l’insegnamento deve partire da problemi (nell’accezione data alla parola da Popper, Antiseri et al.), per arrivare, attraverso le teorie tentative di soluzione (TT di Popper), al processo sperimentale di controllo (corroborazione, falsificazione), fino al nuovo problema, fasi che devono razionalmente e consapevolmente esplicitate nel corso di un insegnamento formativo, come è un Biennio Superiore.

Diversi sono i problemi che devono essere affrontati in successione per ‘costruire’ in una classe di un Biennio, la disciplina, sotto la guida dell’insegnante, ‘alcuni’ dei quali, importanti ed obbligati in quanto innescano a cascata una sequenza di altri, sono qui di seguito sinteticamente nominati:

a – Nella caduta dei gravi con attrito trascurabile e al tempo-iniziale, t0=0 s e v-iniziale, V0= 0 m/s (condizioni al contorno), che relazione ci sarà fra velocità di caduta istantanea e tempo e fra velocità istantanea e spazio percorso?

b – Che relazione ci sarà fra modulo della forza applicata ad un oggetto, che si muova con attrito trascurabile su un piano orizzontale e il modulo dell’accelerazione acquistata (vettore forza e vettore accelerazione con stessa direzione e stesso verso)?

c – Che relazione ci sarà fra quantità di carica elettrica posta su un conduttore isolato (o su un’armatura di un condensatore e l’altra messa a terra) ed il potenziale da esso assunto? (5))

d – Che relazione ci sarà fra (Va-Vb) misurata ai capi di un resistore e la Ic misurata in una sezione di esso?

e – Che relazione ci sarà fra il flusso di induzione magnetica concatenato ad un circuito e l’intensità di corrente in esso circolante?

Ognuno di questi problemi e degli altri della stessa forma matematica non nominati deve essere discusso in classe fino a formulare una o più ipotesi plausibili (non necessariamente ‘vere’), per poi progettare un esperimento di controllo. Nella zona di ‘corroborazione’ o di ‘falsificazione’ dell’ipotesi nascerà il nuovo problema e, se l’ipotesi verrà corroborata (avvalorando magari il risultato facendo riferimenti ad analoghi esperimenti condotti in laboratori di ricerca), avremo ‘costruito in classe un ‘pezzetto’ di fisica!

In questo l’autore cercherà di analizzare il problema a, precisandone aspetti e implicazioni educative e formative, riscoprendo nella caratteristica dialogica di tipo galileiano di condurre il discorso e nei precisi e puntuali interventi di Salviati nei confronti di Simplicio, la chiave per ricostruire la fisica anche nelle classi di oggi.

ANALISI E DISCUSSIONE DEL PROBLEMA RELATIVO ALLA CADUTA DEI GRAVI

problema (a) e formulazione delle ipotesi

Focalizziamo l’attenzione e la memoria degli alunni sulla caduta di oggetti pesanti, sui quali le azioni di disturbo dell’aria sono meno evidenti, almeno per basse velocità.

Alla domanda su come si comporterà la velocità durante il movimento, si hanno in generale perplessità. I nostri ragazzi di 14-15 anni hanno o dovrebbero avere la mente del Simplicio galileiano. Alcuni conoscono già le risposte a memoria, secondo noi, purtroppo, fornite probabilmente su informazioni parziali, disperse, prima che si formulassero le ipotesi, prima che si precisassero le aspettative, prima delle delusioni dinanzi ad ipotesi sbagliate, prima insomma dei processi che innescano il vero apprendimento! E’ un po’ come insegnare direttamente le formule da imparare a mente, per poter fare da subito con esse i così detti esercizi di applicazione di esse, riportati sul libro di testo!

Qualche frammento di ricordo culturale precedente scarsamente assimilato, certi mass media, certi personal media, qualche software selvaggio e poco calibrato, avranno fornito queste nozioni fine a se stesse.

IL maggiore tradimento, pur inconsapevole, che la civiltà tecnologica abbia mai perpetrato ai danni dei cuccioli della specie secondo lo scrivente è proprio questo: sono stati gettati in un contesto tecnologico di natura altamente simbolica e lontano così dalla teorie del senso comune, pur coronato eccezionalmente da buon senso, ‘il buon senso del senso comune’, a cui gli alunni possono essere vicini, in un mondo incomprensibile, nel quale i messaggi si trasformano in nozioni isolate senza contesto da memorizzare e delle quali sfuggono le ragioni più profonde, in un mondo dove i ‘messaggi’ svuotati dal ‘mezzo’, per mutuare le parole di McLuan, annebbiano curiosità e meraviglia, uniche molle del progresso umano.

Fortunati se c’è ancora qualche Simplicio, che vede cadere dalla mano il grave subito velocemente appena lasciato. Allora, a guisa del Salviati galileiano l’insegnante può guidare la discussione, al di là di tutto, del tempo e dei programmi, delle scadenze e dei voti, delle rimostranze degli ingegneri del triennio se non ricordano le formule a mente e le definizioni…; il cucciolo dell’uomo ha il diritto di imparare a ‘costruirsi’ i propri modelli razionali, efficaci e graduali, di interpretazione del mondo. E’ solo in questa prospettiva che ha significato l’aggettivo ‘formativo’ che attribuiamo all’insegnamento della fisica al biennio superiore.

Sarebbe interessante a questo proposito compilare una serie di domande opportune che colgano in profondità le strutture di base della fisica formativa del biennio, al di là delle mere nozioni e delle meccaniche esercitazioni spicciole, e con esse preparare un questionario da somministrare agli studenti alla fine del biennio e contemporaneamente alla fine del triennio tecnico raccontando e riflettendo sui risultati comparati. Anni fa, quando insegnavo ancora, feci un tale esperimento aiutandomi nella compilazione anche con questionari sorti in testi specializzati e nelle accademie per analoghi compiti. Da questo mio unico studio risultò, stranamente, che l’insegnamento tecnico con i suoi tecnicismi, meccanismi, espedienti ed artifizi sembrò obnubilare il ragionamento fisico formativo, cioè il pensiero fisico (la Philosophia Naturalis), acquisito al biennio! Sarebbe interessante infatti, per l’insegnamento, se si potesse capire e controllare statisticamente, se davvero questa mera ipotesi fosse da considerare corroborata.

Il sasso aumenta di velocità perché urta la mano che cerca di fermarlo, con più violenza a maggior spazio percorso. Tale sforzo della mano non legato in generale alla prima potenza della velocità, ma alla seconda: noi questo lo sappiamo (anche se dobbiamo far finta di non saperlo; per iperbole, meglio sarebbe direttamente non saperlo, direbbe Foerster!), ma Simplicio non lo può sapere.

Possiamo usare così il criterio di semplicità : la prima ipotesi a questo punto che viene in mente agli alunni è la diretta proporzionalità fra V ed S, proprio come accadde anche allo stesso Galileo! (6).

Quando nella discussione di un problema concludiamo che all’aumentare di una grandezza anche l’altra, alla prima ipoteticamente correlata, aumenta o diminuisce ‘spariamo’ l’ipotesi più semplice di diretta o inversa proporzionalità rispettivamente, a meno che ulteriori approfondimenti della discussione non suggeriscano altrimenti (caso per es., della relazione fra forza gravitazionale e distanza, da affrontare in altro lavoro; vedere intervento dello stesso autore nel blog).

Scrivere oggi V=K*S sembra ‘proibito’ (vedere dopo), per ragioni però troppo lontane dalla mente del nostro alunno Simplicio; comunque essa è la ipotesi più immediata e più vicina al senso comune degli alunni (ed anche a quello di Galileo!) e la dobbiamo mettere nella discussione.

Così la classe, se è vero come è vero che la velocità aumenta anche al passare del tempo, due ipotesi ‘tentative’ saranno formulate dalla classe sul problema della caduta dei gravi, che nelle nostre condizioni al contorno, che riguardano velocità e tempo iniziali, si presenteranno come segue:

1 – La V-istantanea ed S direttamente proporzionali.

2 – La V-istantanea e t direttamente proporzionali.

PRECISAZIONI E SOTTIGLIEZZE CHE SORGONO ARGOMENTANDO SULLE DUE IPOTESI

Non è così immediato intuire per gli alunni che le due ipotesi non sono la stessa cosa. Dobbiamo così rifarci alla matematica elementare del moto uniformemente accelerato (già spiegato in cinematica fra i modelli razionali per ‘leggere’ i diversi moti possibili: se V e t sono direttamente proporzionali (sotto le solite convenzioni al contorno), si dimostra matematicamente e graficamente che V^2 ed S sono direttamente proporzionali e non V ed S, e nel dire V ed S direttamente proporzionali e V e t direttamente proporzionali si vengono ad enunciare due ipotesi diverse e alternative.

Come già accennato anche lo stesso Galileo davanti allo stesso problema formulò proprio le stesse due ipotesi, anche se su V=K*S ebbe in breve dei dubbi. Infatti, dopo avere annunciato tale ipotesi in una lettera a Paolo Serpi, subito dopo, nei “Discorsi e dimostrazioni matematiche”, faceva dire per bocca di Salviati:

Quando le velocità hanno la medesima proporzione che gli spazi passati o da passarsi, tali spazii vengono passati in tempi uguali: se dunque le velocità con le quali il cadente passa lo spazio di 4 braccia furon doppie delle velocità con le quali passò le prime due braccia, [appartenenti alle 4 precedenti; nota dell’Autore] (sì come lo spazzio e doppio dello spazio) adunque i tempi di tali passaggi sono uguali”

Nello stesso moto si verrebbero a percorrere nello stesso tempo un dato intervallo di spazio e la sua metà, appartenente ad esso cosa che può accadere solo se il movimento è istantaneo (velocità infinita). Il ragionamento di Galileo può essere descritto, dalla tabella successiva, considerando X la velocità media nelle prime due braccia e 2X la velocità media in tutte le 4 braccia e, se t = S/Vm (S/t=Vm con le nostre condizioni al contorno), 2/X è l’intervallo di tempo nelle prime due braccia e 4/(2.X) e l’intervallo di tempo in tutte le quattro braccia

                                       S          Vm                t           CONCLUSIONE

Le prime due braccia      2           X              2/X                   2/X

Le quattro braccia          4           2.X            4/(2.X)              2/X

Si vedano anche le altre più qualificate e profonde argomentazioni sorte ultimamente in ambiente accademico (7) (8).

Il fatto che la discussione galileiana su un problema presenti varie sfaccettature, il fatto che esistano più modi di argomentare sull’ipotesi conseguente non significa che non si debba, come faceva Galileo – non necessariamente allo stesso modo- discutere su problemi per tentare soluzioni prima dell’esperimento. Chi vede in questo pericoli di ambiguo verbalismo, non coglie i significati profondi di un corretto discorso epistemologico e psicologico sui processi di acquisizione della conoscenza e, quello che è più grave, potrebbe sviare gli interventi per il recupero delle situazioni tutt’altro che rosee focalizzate dai diversi tests piagettiani sull’intelligenza formale del giovane di oggi (9) (10).

Consapevolmente o no, Galileo, sempre secondo l’autore dello scritto, dimostra la non coincidenza delle due ipotesi e così faremo nell’insegnamento: si formuleranno le due ipotesi e si dimostrerà in qualche modo che sono diverse e alternative se è ‘vera’ l’una , non lo sarà l’altra e viceversa.

Si passerà poi a controllare in laboratorio se è corroborata l’ipotesi V/t=K, che fornisce come proposizione sperimentabile S/t^2=K. Con l’asserzione-base S=t^2*K che è appunto la formulazione meglio sperimentabile di V/t=K, andiamo in laboratorio per il controllo. In realtà l’ipotesi in un certo ‘range’ di errore è corroborata.

Siamo così arrivati a concludere che l’oggetto (per es., una sferetta d’acciaio, se si utilizza un’apparecchiatura Leybold) cade di moto uniformemente accelerato e quindi la relazione fra velocità e spazio è del tipo V^2/S=K, moto matematicamente e fisicamente possibile, mentre la relazione V=K*S rimane esclusa sperimentalmente. L’ipotesi V^2/S=K però non era così semplice come l’altra, per cui non veniva formulata in prima istanza. Chiaramente le due ipotesi V=Kt e V^2=K*S sono fisicamente la stessa cosa.

Rimangono ora da precisare alcune sottigliezze implicate nel significato di K e quindi formulare il nuovo problema da affrontare nella successiva unità didattica. Prima però analizziamo brevemente il significato matematico e fisico della ipotesi V/S=K e V^2/S=K

ALCUNE CONSIDERAZIONI FISICO-MATEMATICHE SULL’IPOTESI V=K*S

Analisi matematica e fisica dell’ipotesi V=K*S

L’ipotesi è espressa dall’eq. differenziale a variabili separabili: dx/dt=K*(x-x0). Dall’analisi di essa, forse impossibile ai tempi di Galileo o meglio che Galileo non conosceva, deriva che, per la ricerca delle soluzioni è necessario porre la condizione che (x-x0) > < 0, perché, separando le variabili (dx/(x-x0) =K*dt) questa differenza va al denominatore, per cui nel processo si perderebbe la soluzione matematica (che invece (fisicamente) potrebbe esistere?), (x-x0)=0 m.

___________________________________

Possibile significato della soluzione (x-x0)=0 (argomentazione incerta? Da rifletterci!)

Galileo_VfS

All’istante t=0 s quando x=x0 la velocità è zero e, non potendo aumentare x, non aumenta V, per cui x=xo rimane costante al passare del tempo e l’oggetto non si muove. Invece l’eq. dx/dt=K*t fornisce ancora per t=0, Vo= 0 m/s, però il tempo scorre, per cui la V può aumentare.

x=xo sembra così essere l’unica soluzione: a t=0, ovunque, del percorso x, poniamo l’origine dello spazio xo , l’oggetto ivi in quiete (Vo=0 m/s), lasciato andare, rimarrebbe in quiete (se vogliamo, si dovrebbe attendere cioè un tempo infinito per vederlo iniziare a muoversi).

IN FORMULE

dx/dt = k.x   separando le variabili:   dx/x = k.dt; integrando:    logx = k.t + logC; passando agli esponenziali:   e^logx = e^(k.t + logC),  e , ponendo C1=e^logC :

e^logx=e^kt . e^logC)

x=C1.e^kt

Se x=xo al tempo t=0, si ha che C1=xo ed      x=xo.e^kt

Se,  al tempo t=0, x=xo=0  e C1=0, si conclude che:

x = 0. e^kt e quindi      x=0

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Non esistono altre soluzioni fisiche all’equazione, perché l’integrazione per il calcolo dello spazio (equazione oraria) non può partire dal punto xo (distanza dall’origine a t=0 s), non permettendo quindi la scelta arbitraria (convenzionale) delle origini; si otterrebbe infatti, integrando l’equazione  dx/(x-x0) =K*dt  fra xo ed x, la seguente espressione, chiaramente inaccettabile:

log(x – xo) – log(0) = K*t


Analisi matematica e fisica dell’ipotesi V^2 = K*S fornisce un modello fisico che funziona

L’analisi matematica dell’ipotesi V^2 = K*S fornisce un modello fisico che funziona:

(dx/dt)^2 = K*(x-x0)

dx/dt = +/- SQR (K) * SQR (x-x0)

Separando le variabili e integrando fra x0 ed x:

2*SQR (x-x0) – 0 = +/- SQR (K)*t

Elevando al quadrato:

4 * (x-x0) = K * t^2


N.B. Dopo aver letto i due  links, tornare indietro all’articolo (cliccando sulla freccia in alto a sinistra)  per leggere l’ultima parte dell’articolo!

Per ulteriori chiarimenti e precisazioni si aggiungono in link anche le due argomentazione indipendenti di Giorgio Cellai e Pier Francesco Bianchi sulla soluzione della stessa equazione differenziale a variabili separabili:

dx/dt=K*(x-x0)

Argomentazione di Giorgio Cellai in pdf

Cellai 18-2-19

Argomentazione di Pier Francesco Bianchi in pdf

GALILEO_Pf_Bianchi0001

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Ma, al di là di tutto ciò che insegna Galileo, è il modo scientifico formativo di condurre il processo, il modo di discutere il problema, sezionandolo con tutti gli strumenti razionali conosciuti per chiarirlo e ‘sparare’ infine un tentativo di soluzione: ciò che insegna Galileo in definitiva è il modo corretto di fare lezione in una classe in cui si formano i cervelli!

FASI SINTETICHE DEI PROCESSI RAZIONALI, ‘RICCHI’ DI TRANSFER, NELL’ANALISI DEL SIGNIFICATO DELLE COSTANTI DI PROPORZIONALITA’

In generale le fasi del processo razionale davanti ad una ipotesi di diretta proporzionalità, corroborata nell’ambito dell’errore, possono essere brevemente delineate in questo modo:

1 – La grandezza derivata K non dipenderà dalle grandezze che lega, ma da altre relative a ‘qualcosa’ di rilevante che durante l’esperimento non è cambiato.

Se, in dinamica, F/a = K, il valore di K non dipenderà dalla grandezza della variabile accelerazione né dalla grandezza della variabile forza (almeno nel ‘range’ dell’errore sperimentale) e quindi potrebbe dipendere da qualche grandezza relativa all’oggetto con cui abbiamo sperimentato che immaginiamo invariato durante l’esperimento. Da quali?

Se, in elettrodinamica, (Va – Vb)/Ic = K, il valore di K non dipenderà dalle grandezze elettriche differenza di potenziale e intensità della corrente; è facile riferirci allora a qualche proprietà del conduttore su cui abbiamo sperimentato. Da quali?

Se, in elettrostatica, Q/V = K, il valore di K non dipenderà dalle grandezze eletrostatiche carica elettrica e potenziale elettrico, ma da qualche proprietà del conduttore dell’esperimento. Da quali?

2 – Il significato fisico di K nasce poi dal metterci, anche mentalmente, nelle condizioni di ripetere l’esperimento ottenendo un valore di K diverso.

Se il K di F/a dipende dall’oggetto su cui abbiamo sperimentato, immaginando un oggetto diverso, se K verrà maggiore, a parità di forza applicata, a acquistata sarà minore; cioè K dipenderà da una proprietà dell’oggetto che si configura come ostacolo all’accelerazione. Potrebbe essere già stata introdotta una grandezza fondamentale che misuri tale proprietà con la bilancia inerziale (al limite una molla tenuta compressa da un filo), con cui si può attribuire un numero e marca  alla massa Inerziale (vedere dopo).

Se il K di (Va-Vb)/Ic dipenderà da qualche proprietà del conduttore usato, cambiandolo otterremo un K diverso. Se è maggiore significherà che, per es., a parità di differenza di potenziale avrò una Ic minore: K si configura come una specie di ostacolo al passaggio della corrente (resistenza elettrica). Una successiva discussione potrà precisare la dipendenza di K dalle grandezze geometriche del filo ecc. Si innescherà una successione di problemi a cascata da affrontare in successive unità didattiche.

Se k di Q/V dipende dal conduttore caricato, cambiandolo dovrebbe cambiare K: se K è maggiore significherà che posso mettere su tale conduttore più carica, a parità di potenziale; cioè K potrebbe avere il significato di capacità elettrica di quel conduttore. Una successiva discussione preciserà la dipendenza da altre grandezze e così via.

3 – Precisazione concettuale delle grandezze investigate.

Come si vede si tratta di veri e propri processi razionali che si ripetono in ambienti diversi, favorendo il transfer concettuale all’interno della disciplina (transfer specifico di Bruner), attraverso il potente Principio di Continuità galileiano.

ASPETTI RELATIVI AI SIGNIFICATI DELLA COSTANTE DI PROPORZIONALITA’ FRA V e t

Abbiamo corroborato in laboratorio l’ipotesi V/t = K: K ha le dimensioni di una accelerazione, e, proprio perché non cambia durante il movimento, non dipenderà dalla V, né dal tempo che cambiano. Potrei così, nella falsariga degli esempi accennati nel paragrafo precedente, affermare che K venga a dipendere da qualche proprietà dell’oggetto usato per l’esperimento. Tale congettura è plausibile abbastanza a questo stadio: oggetti più o meno ‘pesanti’, per es., potrebbero avere accelerazioni di caduta diverse….Cioè dire che K dipende da qualche proprietà dell’oggetto, può voler significare, per es., che oggetti più ‘pesanti’ cadrebbero con un K maggiore (è la congettura più frequente nelle classi, a causa dei riferimenti all’esperienza quotidiana).

Nasce così il nuovo problema sul significato di K ed eventuali ulteriori problemi sulla sua dipendenza da qualche altra grandezza.

Formuliamo, per es., l’ipotesi che sperimentando con un oggetto più ‘pesante’, il K diventi maggiore: oggetti più ‘pesanti’ cadrebbero allora con maggiore accelerazione?

Lasciamo in questa fase, la discussione ad un livello basso, per sfruttare la delusione onde focalizzare l’interesse e destare ‘meraviglia’. Volendo potevamo approfondire usando anche il Teorema di Galileo sull’argomento (nota n.11), eliminando praticamente il rischio sull’ipotesi.

La classe segue motivata il nuovo esperimento sulla misura di K nella caduta e la delusione delle aspettative lascia piuttosto perplessi: la proprietà o le proprietà dalle quali sembrava dipendesse il nostro K sembra non siano relative all’oggetto scelto per l’esperimento.

Seguiranno successivamente argomentazioni insieme alla classe sui presupposti che hanno portato alla formulazione dell’ipotesi sbagliata. A questo punto possiamo anche inserire il teorema galileiano, per tranquillizzare nell’immediato la classe. Si potrà continuare anche a precisare i concetti coinvolti sperimentando col Tubo di Newton.

La discussione dovrà poi procedere facendo riferimento a dati riportati di libri e riviste: si conclude che “tutti i corpi in assenza di attrito cadono, nello stesso posto, con la stessa K (stessa accelerazione)”. Così sembra importante anche il ‘posto’, la zona di spazio dove si esegue l’esperimento, quasi che le ‘zone di spazio’ influiscano in un certo modo sulle proprietà dell’oggetto usato, spostandoci a giro per universo.

I corpi celesti infatti deformano lo spazio con una grandezza vettoriale chiamata ‘campo gravitazionale’. Il comportamento del nostro K potrebbe essere modificato proprio da tale campo: quindi l’oggetto, le cui proprietà non cambiano durante l’esperimento in un dato posto, ha a che fare anche con il corpo planetario nelle vicinanze, nella fattispecie la Terra (il ‘pesare’ degli oggetti non è forse una funzione dei campi gravitazionali nelle vicinanze?). Così il valore del nostro K risentirà di proprietà forse  intrinseche – proprietà di opporsi a K o proprietà di attrarre e farsi attrarre, cioè di ‘costruire’ K – all’oggetto usato per l’esperimento (o forse potrebbero costruirsi’ in interazione con ‘aspetti’ dello spazio vicino e lontano? Mach, Newton). Proprietà insomma che 1) ora ne ostacolano il suo valore (massa inerziale, misurabile con un bilancia inerziale), 2) ora lo aumentano (peso e mass gravitazionale, misurabili con un dinamometro opportunamente tarato e con una bilancia a bilico) – i due aspetti precedenti ne controllano la sua strana costanza, aspetto caratteristico del nostro Universo – 3) ora che dipendono dal ‘posto’ dell’esperimento, pur mantenendo la sua costanza per tutti gli oggetti usati. Il peso degli oggetti ha a che fare con la legge gravitazionale di Newton.

Newton affermava che esistevano almeno due tipi di proprietà intrinseche ad un ogni oggetto fisico collegate al concetto di massa: la massa inerziale, che rappresenta la proprietà di opporsi allo stato di quiete e moto rettilineo uniforme, cioè alla accelerazione, e la massa gravitazionale, proprietà invece di farsi accelerare e creare accelerazione in interazione con altri oggetti. Concettualmente, pur interne all’oggetto, le due masse sono concettualmente disgiunte, nel senso che non sono collegate logicamente da una argomentazione teorica; infatti le rispettive grandezze nascono da due esperimenti di misura completamente diversi. La massa inerziale utilizza per la misura una esperimento che fa riferimento al Terzo principio della dinamica, Principio di Azione e Reazione, mentre la massa gravitazionale si misura con una bilancia a bilico. Queste due misure sperimentali, di natura concettuale completamente diversa, con scelta opportuna delle loro unità,  risultano numericamente uguali per qualsiasi oggetto: una stranezza caratteristica del nostro Universo! Allora si disse: E’ così perché è cosi!
La uguaglianza numerica di esse per ogni oggetto fisico poteva essere ricavata più semplicemente anche con un ragionamento argomentativo (Newton) partendo dalla costanza dell’accelerazione di gravità g, per es., in un zona limitata dello spazio intorno alla terra, non solo durante il moto, ma per qualsiasi tipo di oggetto di qualsiasi natura. Se lascio cadere in una piccola zona un qualsiasi un oggetto di qualsiasi natura e grandezza, per le due definizioni di massa e per il Secondo Principio della Dinamica, l’oggetto, sottoposto alla sua forza peso P che, nel nostro caso, rimane circa costante per ogni oggetto durante il moto, ma varia da oggetto a oggetto, crea una accelerazione a costante per ogni oggetto, ma non è detto che abbia lo stesso valore passando da un oggetto ad un altro se P cambia. In effetti alla accelerazione finale contribuiscono i due contributi delle due masse:

a1=kMg e a2=k’/Mi

Poichè a1 è un incremento e a2 è un decremento sull’accelezazione finale, i due contributi devono essere uguali, se l’acc. finale rimane costante (accelerazione di gravità) per tutti gli oggetti in caduta, cioè g, per l’ ipotesi iniziale.

Qualsiasi oggetto prendo, per l’uguaglianza di g, a1=a2 per cui kMg=k’Mi; ne deriva kMg/k’Mg=1 e quindi, se k=k’ (opportuna scelta delle unità di misura, per le due masse), ottengo Mg=Mi. Basta si consideri che l’oggetto campione  per la massa corrisponda ad una unità di Mi e una di Mg? La differenza numerica delle due masse all’interno degli oggetti risultò dell’ordine di 10^-12. [ Nel blog, cercare “Tao…”, nota (***), ancora di Piero Pistoia].

Il problema diventa complesso: potrà o non potrà essere sviscerato in tutte le sue parti a seconda dei livelli di comprensione e di impegno delle classi di un biennio superiore.

Una cosa è certa: a più di quattro secoli da Galileo dobbiamo esser contenti se si trova ancora nelle nostre scuole, nonostante i mass media, i personal media…, qualche Simplicio che fa ancora le stesse domande ingenue a fronte degli stessi problemi e quasi allo stesso modo.

Rimane da chiederci se la nostra pesante cultura del periodo post-industriale e tecno-ragionieristico, con i suoi prodotti tecnologici così sofisticati fuori della scuola ed anche dentro la scuola (rotaie a cuscinetto d’aria, cronografi ad 1/1000 di sec…), non possa creare nella mente impressionabile dei nostri ragazzi, sovrastrutture così artificiose da impedire i livelli di maturazione normale ed il formarsi graduale di modelli calibrati di interpretazione del mondo (gradualmente sempre più simbolici) e quindi lo sviluppo armonico dell’intelligenza (9) (10).

NOTE E BIBLIOGRAFIA CONSULTATA

1 – K. Popper “Logica della scoperta scientifica”, Einaudi,1970; K. Popper “Conoscenza oggettiva”, Armando, 1975; P. Feyerabend,T.Khun, I. Lakatos et al. “Critica e crescita della conoscenza”, feltrinelli, 1976; D. Antiseri “Epistemologia e didattica delle scienze”, Armando, 1977; P- Redondi “Epistemologia e storia della scienza”, Feltrinelli, 1978.

2 – J. Piaget e B. Inhelder “De la logique de l’enfant e la logique de l’adolescent”, Puf Paris, 1955; J. S. Bruner “Lo sviluppo cognitivo”, Armando, 1973; J. S. Bruner “Il significato dell’educazione”, Armando, 1973; R. Mazzetti “Dewey e Bruner”, Armando, 1976.

3 – J. S. Bruner “Verso una teoria dell’istruzione”, Armando, 1967; M. Laeng “L’educazione nella civiltà tecnologica”, Armando, 1969; P. Pistoia, A. Pazzagli “I fondamenti psicologici ed epistemologici dell’insegnamento della fisica”, La ricerca,15-12-1977, Loescher; P. Pistoia, A. Pazzagli “I processi di e la loro utilizzazione per l’insegnamento della fisica”, La Ricerca, 15-11-1978, Loescher; A. Pazzagli, P. Pistoia “Alcuni presupposti psicopedagogici ed epistemologici della riforma della scuola superiore”, La Ricerca, 15-3-1980, Loescher.

4 – P. Wiener e A. Noland “Le radici del pensiero scientifico”, Fltrinelli, 1977; per non parlare dell’analisi del pensiero galileiano condotta da Feyerabend in “Problemi dell’empirismo”, Milano, 1971 e in “Contro il metodo”, Milano, 1973.

5 – P. Pistoia “Considerazioni critiche su un progetto programmatico relativo al processo di comprensione di una concetto fisico”, La Ricerca, 15-10-1981,Loescher.

6 – G. Galilei “Discorsi e dimostrazioni matematiche”, Salani, 1964.

7 – S. Bergia, P. Fantazzini “La Fisica nella scuola”, XIII, N.1, 1980.

8 – Elio Fabri “La fisica nella scuola”, XIV, N.3, 1981.

9 – L. Bergamasco “Didattica e sviluppo intellettuale degli studenti” da ‘Il giornale di fisica’, gennaio-marzo, 1977.

10 – P. Violino e B. Di Giacomo “ Sul livello cognitivo degli alunni delle scuole secondarie superiori” da ‘la fisica nella scuola’, luglio-settembre, 1981

11 – G. Galileo “Ma questo è, ed è insieme vero che una pietra grande si muove, per esempio, con 8 gradi di velocità, ed una minore con quattro, adunque congiungendole ambedue insieme, il composto di loro si muoverà con velocità minore di otto gradi; ma le due pietre, congiunte insieme, fanno una pietra maggiore che quella prima, che si muoveva con 8 gradi di velocità; adunque questa maggiore si muove meno velocemente che la minore che è contro vostra supposizione”

In effetti Galileo fece ben pochi esperimenti; qualcuno ha detto che forse ne fece uno solo, quello sul piano inclinato ( Galileo’s ? experiment: Myth and symbol, da Rogers “Physics for inquiring mind”, Princeton ). Galileo era un fisico teorico piuttosto che uno sperimentale. Egli usava l’argomentazione logica  in esperimenti pensati e il principio di continuità, individuato in lui da Mach, per cui si mantiene la struttura concettuale, variando lentamente, con continuità appunto, gli elementi sperimentali. Se oggetti di diverso peso (gravi) cadevano dalla stessa altezza, dovevano toccare terra con la stessa velocità, altrimenti si manifestava una contraddizione. Ammettendo che il più peso avesse velocità maggiore, collegandolo all’altro più leggero, questo oggetto composto complessivamente, più pesante di ognuno dei due, avrebbe dovuto possedere una velocità ancora maggiore rispetto al più pesante da solo. La contraddizione nasce perché, nella combinazione dei due, il leggero, a sua volta, avrebbe dovuto rallentare invece il più pesante e quindi la velocità finale dell’oggetto composto avrebbe dovuto essere in effetti minore del più pesante da solo. E’ interessante notare che la velocità, uguale per tutti i gravi, derivata logicamente, rimandi ad una proporzionalità “nascosta e profonda” fra massa gravitazionale ed inerziale per tutti gli oggetti dell’universo fisico. Sembra così che esista un legame fra il ragionamento logico, in esperimenti pensati con oggetti fisici, e le leggi profonde. Se le leggi al di sotto delle apparenze non fossero così, si potrebbero verificare contraddizioni logiche da qualche parte del mondi fisico.

Piero Pistoia

Da continuare….

TIPS DI SCIENZA PER POETI, LETTERATI, FILOSOFI , PRETI, VISIONARI, ESPLORATORI, SANTI E…GUIDE TURISTICHE a cura di PF. Bianchi e P. Pistoia

Curriculum di piero pistoia :

piero-pistoia-curriculumok (0)

 

TIPS E FACILITIES DI SCIENZA PER POETI, LETTERATI, FILOSOFI (ECCETTO GLI EPISTEMOLOGI), ESPLORATORI, PRETI, SANTI, VISIONARI E … GUIDE TURISTICHE

Esercizi per recuperare e/o consolidare la memoria!

a cura di Piero Pistoia e  Pier Francesco Bianchi

PARTE PRIMA

N.B. Il post è in via di costruzione e correzione!

clicca qui:      Serie TIPS

I FORMULE DI TAYLOR E MACLAURIN Lo scopo delle formule di Taylor e Maclaurin è di approssimare una funzione con un polinomio di grado arbitrario centrato in x0 nel caso di Taylor e in 0 (origine) nel caso di quella di MacLaurin. La formula di Taylor è espressa come: y = f(0)+ f ‘(0)*(x-xo)/1! + f ”(0)*(x-x0)2/2!+f ”'(0)*(x-x0)3/3!+…+f(n-1)(0)*(x-x0)n-1/(n-1)! + Rn(x)   dove Rn(x) =(x-x0)(f(n)(x0)+d(x))/n!  che è chiamato  resto dove d(x) è infinitesimo per x-> x0 ed è zero per x=x0. La formula di Maclaurin, come già scritto, è espressa come: y = f(0)+ f ‘(0)*x/1! + f ”(0)*x2/2!+f ”'(0)*x3/3!+…+f(n-1)(0)*x(n-1)/(n-1)! + Rn(x)  ed equivale a quella di Taylor per x0=0 dove Rn(x) è detto ancora resto. Queste due serie possono sempre essere associate ad una funzione, ma particolare importanza hanno se sono serie convergenti e convergono proprio alla f(x) da cui sono originate.

PARTE SECONDA

CRITERIO DI CONVERGENZA PER LE SERIE IN STUDIO DA SVOLGERE!! APPLICAZIONI DELLA SERIE DI MACLAURIN ALLE FUNZIONI BINOMIALI y=(a+x)n ; y=(a-x)n ; y=(1+x2 )1/2 ; y(1-x2 )-1/2 ; y=(1+x2 )-1/2 ; y=(1+x2 )-1

y = y(x) = (a + x)n

f(0)=an;

f ‘(0) = n(a+x)n-1 = nan-1;

f ”(0) = n(n-1(a+x)n-2 = n(n-1)an-2;

f ”'(0) = n(n-1)(n-2(a+x)n-3 = n(n-1)(n-2)an-3; e così via…

Sostituendo nella serie di Maclaurin abbiamo:

(a +x)a+ nan-1 x/1! + n(n-1)an-2x2/2!…

serie binomiale standard

Tale serie è vera per valori di n positivi, negativi e frazionari. Per risolvere gli altri casi basta (?) sostituire ad a, ad ed a x i loro valori:

a=1

n=1/2 o -1/2 o -1

x->x2 o -x2

e procedere poi alla sostituzione nella serie binomiale standard. Da controllare.

ESEMPI:

Il problema dell’approssimazione di una funzione con una data funzione polinomiale è di fondamentale importanza. E’ necessario per poter procedere che le funzione data sia continua e derivabile almeno n volte. Supponiamo di voler calcolare il valore della funzione e per un valore vicino allo 0. Per es. 0,2. La prima cosa che imponiamo il valore del polinomio nello 0 sia uguale a e =1 quindi il polinomio di primo grado deve avere il termine noto uguale a 1. D’altra parte richiediamo anche che in un intorno di 0 sia il polinomio che la funzione data varino nello stesso modo; per cui la derivata prima della funzione calcolata nello 0 è uguale a 1 e quindi il polinomio di primo grado che approssima la funzione sarà y = x+1.e facciamo lo stesso per la derivata seconda che sarà approssimata da un polinomio di secondo grado del tipo La derivata seconda di nello 0 vale sempre 1 . Derivando troviamo la derivata prima y’= 2ax+b e y”=2a da cui 2a=1 quindi a=1/2, b=1 , c=1. Per cui il polinomio è y=1/2 +x +1. Procedendo nello stesso modo per il polinomio di terzo grado troviamo y=1/6 x +1/2 + x+1. Tanto maggiori in numero saranno le condizioni tanto più l’errore tenderà a 0. Così per il valore x=0,2 troviamo il polinomio di terzo grado p( 0,2) = 1,221. Per il polinomio di quinto grado p(0,2)= 1,221402 Vediamo quindi il valore del polinomio si avvicina sempre di più al valore reale e l’errore diminuisce e tende a 0. In questo caso i due polinomi differiscono solo dalla settima cifra decimale in poi e quindi l’errore che si può commettere è 10 usando uno dei due. Questo procedimento si può applicare a tante funzioni che sono continue e derivabili in un intorno di 0. Se il valore si distanzia parecchio da zero ma sempre deve essere minore di 1 ci vorranno più termini affinché il valore del polinomio nel punto si avvicini al valore vero della funzione nel punto. La formula che ne viene fuori è la formula di Mac Laurin. F(x)= F(0) +F’ (0) x/1! + F’’(0) x /2!+ F’’’(0) /3| +……… La formula generalizzata di questa è la formula di Taylor; F( x+h) =F(x) + F’(x) h/1!+F’’(x) h /2!+F’’’(x)h /3! +…… Questa formula ha come valore di partenza un qualsiasi x di cui si conosca bene il valore della funzione nel punto e quello delle derivate sempre nello stesso punto. L’errore che si commette nell’approssimare la funzione F con il polinomio di Taylor di grado n dipende dall’ h considerato e dal grado n del polinomio. Vediamo ora l’applicazione del polinomio di Taylor a varie funzioni.: y= ( a+x) f(a) ( che si ha per x=0 )= a f’(a)= na f’’(a)=n(n-1)a così facendo otteniamo: y=(a+x) = a + na x/1!+ n(n-1)a x /2!+n(n-1)(n.2)a x /3! +…… Per la funzione y= ( a-x) basterà mettere al posto di x -x e verrà fuori una serie a segni alterni in quanto la potenza di –x per x dispari resta negativa. Vediamo ora y =(1+x) F(1)=1 (x=0) F’(x)=1/2( 1+x) F’(1)=1/2 F’’(x)=-1/4(1+x) F’’(1)=1/4 y =(1+x) =1+1/2 x/1!+1/4x /2!+…… Se si vuol approssimare y =(1+ ) basterà sostituire alla x e quindi y =(1+ ) =1+1/2 /1!+1/4x /2!+….. Per la funzione y = ( 1- ) basterà cambiare con – e anche in questo caso avremo una serie a termini alternati nel segno. Prendiamo ora in esame y = ( 1+x) F(1)=1 (x=0) F’(x)=-1/2(1+x) F’(1)=1/2 F’’(x)=1/2(-3/2)(1+x) = -3/4)(1+x) F’’(1)= -3/4 Per cui y = ( 1+x) =1+1/2 x/1!-3/4 /2!+…. Per y =(1+ ) basterà sostituire alla x e nello stesso modo per y =(1- )

TIPS  SULL’USO DELLE  MATRICI CON ESEMPI

matrix_prodoct0002

Un altro esempio rilevante  dell’uso dell’algebra matriciale è quello di poter rappresentare il modello della regressione lineare multipla. matrix_tip20001

tip_inv

Matrice inversa, trasposta e prodotto

tip_inv_4

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA: INTRODUZIONE

tips_mlr1_Piero Pistoia 

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA:  ESEMPI DI APPLICAZIONE

tips_mlrvar20003

tips_mlr1var20003

Per vedere il tip sugli esempi cliccare sotto

tips_mlr_es2

GEOMETRIA E NATURA: geometrie non euclidee, dott. prof. Giacomo Brunetti, dott. prof. Pier F. Bianchi… post aperto ad altri interventi

Testo rivisitato da il ‘Sillabario’ n. 2 1997

GEOMETRIE NON EUCLIDEE

Il punto di vista del filosofo

Dott. Giacomo Brunetti

geometrie0001 geometrie0001 Geometria_Brunetti0002

Geometria_Brunetti0002

Vers. rivisitata, Il Sillabario, n.2, 1997

L’EDITORIALE ED ALTRO

ATTENZIONE! QUESTO BLOG E’ IN VIA  DI SVILUPPO

PREMESSA

N.B. IN QUESTO BLOG, il sillabario2013, OGGETTO CULTURALE NUOVO ED AUTONOMO, RIPROPORREMO,  TALORA RIVISITATI, ANCHE INTERVENTI RITENUTI RILEVANTI DA ‘IL SILLABARIO’ CARTACEO OSPITATO AL TEMPO COME INSERTO DELLA ‘COMUNITA DI POMARANCE’,  OLTRE AD ALTRI.

______________________________

Per vedere la storia dal Sillabario cartaceo al Sillabario2013 cliccare sul seguente link: sillabario_storia2

Dopo anni dalla cessazione del ‘Sillabario cartaceo’, in una riunione in Comune alla presenza del Sindaco e dell’Assessore alla Cultura, fu proposto che questo blog fosse gestito dal Comune stesso, per es., come ‘scritti’ della Biblioteca Comunale, ma la proposta fu respinta.

___________________________

Il nuovo Sillabario2013  appare così  su un piano strutturale diverso: si pone come strumento di comunicazione culturale generale, il suo unico scopo, completamente gratuito ed indipendente, autodeterminato ed autofinanziato senza alcun legame eccetto quello con i suoi collaboratori ed, in esso, è completamente assente ogni scopo di lucro ed ogni transazione finanziaria di qualsiasi tipo ed a qualsiasi livello. Più di 15 anni fa cessando le pubblicazioni, l’inserto ‘Il Sillabario’ aveva lasciato una ‘nicchia’ culturale scoperta e nuovi soggetti l’avevano utilizzata per costruire questo nuovo oggetto culturale: ilsillabario2013. 

RERUM NATURA COGNOSCERE DIFFICILE QUIDEM EST, AT MODUM COGNOSCENDI LONGE DIFFICILIUS  (Campanella)

DISCORSO E SENSATE ESPERIENZE

 Il pensiero di Galileo nella cultura italiana è stato a lungo male interpretato e in particolare stravolto un aspetto importante del suo metodo scientifico (Galileo era un fisico teorico non un empirista tout court), chiaramente espresso nelle sue parole sulla teoria eliocentrica di Copernico “…, né posso abbastanza ammirar l’eminenza dell’ingegno di quelli che l’hanno ricevuta e stimata vera ed hanno con la vivacità dell’intelletto loro fatto forza tale a i proprii sensi, che abbiano possuto antepor quello che il discorso gli dettava, a quello che le sensate esperienze gli mostravano apertissimamente in contrario e più avanti “…, non posso trovar termine all’ammirazione mia, come abbia possuto in Aristarco e nel Copernico far la ragione tanta violenza al senso che contro a questa ella si sia fatta padrona della loro credulità” (Dialogo dei massimi sistemi 3a giornata in Galileo, Opere, Vol. III, pgg. 81-82, Salani, 1964).

E’ vero che in altri passi del suo trattato sembra sottolineare il contrario, per cui molti pensatori anche oggi in Italia valorizzano ad oltranza le sue ‘sensate esperienze’, anche sull’onda lunga del rimbalzo empiristico-pragmatico del dopo guerra. Secondo noi però in quei passi Galileo argomenta spesso ponendosi come interlocutore in un dialogo che muove dando ragione alla controparte per poi portare argomenti, come quello sopra, a sostegno di una tesi che vede ‘il discorso’ prevalente.

RIFLESSIONE1: Perchè molte relazioni tecniche, preposte alle scelte, costate al sociale svariate decine di migliaia di euro, presentano in piani cartesiani  rette su dati sperimentali senza misurare la loro rilevanza statistica? Risposta: perchè i fenomeni relativi a questi grafici rientrano già nello stato dell’arte!? COMMENTO: Caspita, che investimento!    (pieropistoia)

ASSERZIONE1:  Non c’è misura se non appare il suo errore; non c’è grafico sperimentale senza  le bande di confidenza!  (pieropistoia).

ASSERZIONE2: NEL COSMO CI SONO INDIZI SUFFICIENTI PER CONFERMARE QUALSIASI IPOTESI (KARL POPPER)

RIFLESSIONE2: Noi non cesseremo mai di esplorare  “l’oggetto complesso”  e l’obbiettivo di tutta questa esplorazione sarà quello di tornare al punto di partenza per osservarlo da angolazioni sempre nuove, utilizzando le informazioni che nel contempo si rendono disponibili relative al background culturale dell’oggetto stesso.

PieroPistoia

RIFLESSIONE3: “Sappiamo che la conoscenza assoluta non esiste, che esistono soltanto teorie; ma se ce ne dimentichiamo, quanto maggiore è la nostra istruzione, tanto più tenacemente crediamo negli assiomi. Una volta a Berlino domandai ad Einstein come gli era stato possibile – a lui scienziato esperto, incallito, un professore, matematico, fisico, astronomo – come, dunque, gli era stato possibile compiere le sue scoperte. <<Ma in che modo mai ha potuto farlo?>> gli chiesi e Albert Einstein rispose sorridendomi con aria comprensiva:<<Sfidando un assioma!>>” LINCOLN STEFFENS, un emerito reporter a cavallo del ‘900.

Lo scritto è ripreso dalla sua Autobiografia, riportato nel libro di Charles H. Hapgood “Lo scorrimento della crosta terrestre”, Einaudi editore, 2013, pag.1.

RIFLESSIONE4: E’ più importante il viaggio o la destinazione? Il processo o la soluzione del problema? Il cammino o la meta? AZZARDA UNA RISPOSTA.

Suggerimento:  se il cammino si fa con l’andare…, allora….

(PieroPistoia)

RIFLESSIONE5: In termini ‘operativi’, la CULTURA è l’espansione verticale (nel senso dell’approfondimento) e l’estensione orizzontale (nel senso della multidisciplinarità e dell’applicazione) del fenomeno scolastico.

(PieroPistoia)

_

_bukowski______________________________________________________

 EDITORIALE ED ALTRO: CHE TIPO DI COMUNICAZIONE CULTURALE PROPONIAMO PER QUESTO BLOG?

La realtà non si trova, ma si costruisce (Nelson Goodman “Vedere costruire il mondo”, Laterza1998). Secondo J.Bruner (“La cultura dell’educazione” , Feltrinelli 1997) tale costruzione passa attraverso l’attività del fare significato, per mezzo della così detta ‘cassetta degli attrezzi simbolici della Cultura’, cioè la tradizione ed i modi di pensare. I veicoli previlegiati di questi attrezzi  o strumenti (tradizione e modi di pensare) sono gli scambi interpersonali all’interno del gruppo. Da qui la nuova lezione didattica e il nuovo  modus cognoscendi (Campanella) da applicare e tradurre nel blob.

Importante è questo aspetto intersoggettivo  della costruzione della conoscenza, perchè l’intersoggettività è una delle più straordinarie predisposizioni archetipiche del genere umano, che permette di capire che cosa hanno in mente gli altri, riuscendo a cogliere i significati dal contesto in cui vengono pronunciate le parole, anche quando risultano ambigue.

In questa ottica, nel nostro blog, gli stessi spunti di discussione non conformi, la presenza di scollamenti talora avventurosi nelle argomentazioni e comunque le idee personali e divergenti  favorirebbero interazione con la presente tradizione e possibilità di cambiare il punto di vista. E ancora: più articoli focalizzati sullo stesso argomento, ora possono costituire insieme al lettore una sottocomunità culturale al cui interno si svolge l’interazione, ora la sottocomunità è costituita dagli autori stessi nel loro confronto (far imparare gli altri e imparare noi stessi in una continua interazione), cosicchè, e nello scolastico e nell’extra scolastico, l’aggiornamento assuma l’unica forma efficace quella dell’auto-aggiornamento, fornendo concreti indizi per la soluzione dei problemi posti anche dall’educazione permanente e ricorrente.

L’educazione attraverso questa comunicazione culturale deve saper guidare i giovani ed i meno giovani (si può acquisire cultura a tutte le età, secondo Bruner), che visitano il blog, ad usare gli strumenti del fare significato al fine di costruire una realtà tale da permettere dapprima un migliore adattamento al mondo in cui viviamo e poi, quando necessario, cambiarlo, rivoltarlo. Infatti se il nostro obiettivo non sarà quello di adattarsi al mondo di una tradizione, ma di guardare al di là di questo mondo-significato  – come per gli animali sagaci di Rilke che “fiutano  / che noi non molto sicuri stiamo di casa /  nel mondo significato” (R.M.RILKE, elegie Duinesi, Einaudi 1982) – sarà necessario come dicono alcuni pensatori e poeti anche attuali, “rovesciare” continuamente i mondi significato, portando ad esperire molti degli infiniti cosmi possibili arricchendo ogni volta la conoscenza. Sta forse in questo il Progresso? Più dubbi che certezze  per costruire il mondo (meno persone stupide!), più “discorso” che “sensate esperienze” che, se “semplificate” in esperimento, giocano un ruolo più ridotto di prima, quello di cercare ad oltranza di falsificare il discorso  (e non di verificarlo!) e toccare quindi la realtà (‘verisimiglianza’ popperiana).

Questo concetto di cultura partecipata non rimanda, come prima si pensava, al processo del “raccontare e del “mostrare” dove un singolo docente od un suo sostituto (libro, rivista film, computer predisposto.., oppure guida turistica),     possessore della “verità” in quella sezione del sapere, racconta e mostra in modo chiaro ed esplicito qualcosa a discenti ignari. Fino ad ieri un tale docente veniva valutato di ottima qualità. Ma ultimamente ci siamo accorti  (Bruner, cap.1, III, 1997) che più chiara ed esplicita è la comunicazione per questa via a senso unico, più basso sarà il tasso di apprendimento e meno fecondo di risultati il frammento culturale comunicato. Ci sembra che Bruner voglia con questo sostenere la tesi già sostenuta da B. Russell : “Ecco una importante verità, peggiore è la vostra logica, più interessanti sono le conseguenze a cui essa da origine”. Oggi, nell’era dei computers, si tende a comunicare pezzi fortemente razionalizzati di cultura, ordinati in scalette logiche ben definite e stringenti, dove la chiarezza ad oltranza determina certezza e rigidità senza spiragli al dubbio e all’elaborazione (comunicazione per teoremi e di teoremi), indebolendo la consapevolezza che la “verità” delle proposizioni analitiche della logica e della matematica  sia correlata strettamente ai presupposti: GARBAGE IN -> GARBAGE OUT!

E questa modalità si ritrova  in ogni disciplina: si pensi all’uso esteso della ricerca delle forme retoriche nell’analisi strutturale delle poesie, a scapito di una riflessione profonda sull’emotivita e l’armonia suscitate dalla loro lettura, aspetti necessari per renderle immortali, universali e impresse nella memoria. In definitia, la speranza, comunque, è che possa permanere, forte ed articolato, il discorso sulla poesia, sia mediante la pubblicazione di testi poetici, sia nella veste critica, con la presentazione di saggi e relazioni letterarie. Questo impegno ci pare importante alla luce del ruolo sempre più centrale che, a giudizio di molti, la poesia va assumendo nella formazione culturale dei giovani. Poesia che appare punto fermo di una riflessione sia scolastica che extra scolastica. Poesia contenitore di passioni, sogni e desideri; ispiratrice di dialogo con se stessi e con gli altri, per mezzo del quale si può giungere ad una maturazione di idee nuove ed originali. In una fase oltremodo caotica dell’esperienza politico sociale dei nostri giorni, si ha, tra l’altro, (e forse proprio per questo) il bisogno da una parte di ritornare ad una poesia del significato, dei contenuti comprensibili, come dice G. Manacord e A. Berardinelli nell’Annuario “Poesia 94”. dall’altra di previligiare il significante, il ritmo, la forma, la struttura del verso e di riscoprire, come avviene in G. Conte, il mito, la lontananza, la profondità dell’anima, distanti da quella ragione (razionalità) che più non sembra evocatrice di verità assolute.

Comunicazione interattiva quindi, meno logica, sempre legata ai contesti, mai punti di vista da “nessun dove”. Comunicazione multidirezionale, punteggiata da punti interrogativi, aperta a ipotesi anche avventurose, sempre pronti a tornare al punto di partenza per osservare l'”oggetto” da un’angolazione completamente nuova. Se “la via si fa con l’andare”, un nuovo percorso può aprire prospettive diverse, arricchimenti inaspettatti e imprevisti facilitando la “scoperta” del collo di uscita dalla trappola di Witghenstein (vedere post relativo)!

SCELTE OPERATIVE PROPOSTE PER IL BLOG BASATE SU CRITERI EVINTI DA SCELTE EPISTEMOLOGICHE (in particolare: il FALSIFICAZIONISMO di POPPER E la PSICOLOGIA CULTURALE  di J. BRUNER)

  • Ogni tema scelto di qualsiasi disciplina verrà trattato, quando possibile, contemporaneamente da più punti di vista, a partire da più autori anche da noi scelti per favorire l’apprendimento per confronto di opinioni.
  • Sarà per quanto possibile coinvolto l’ambiente universitario e della ricerca, perchè si garantisca fra l’altro la trattazione dei temi a livello più aggiornato e di alta qualità.
  • Coinvolgeremo sempre più intensamente in prima istanza i docenti di Istituti Scolastici anche locali (Valle del Cecina, Toscana, Italy), perchè non solo si aprano per il lettore possibilità di fruire più consapevolmente del tema trattato da più punti di vista, aumentandone la sensibilità e le aperture, ma si possa vedere realizzato nel tempo l’anello retroattivo positivo anche sulle scuole locali.
  • La scelte della poesia in primo piano (poesia d’autore) o di un’altra opera artistica (sculture e pitture) verrà lasciata ad un docente a rotazione perchè si riflettano in maniera diretta le esigenze dei programmi scolastici ed il blog possa entrare come punto di riferimento dei curricola scolastici locali e non, onde poter scoprire col tempo anche l’efficacia di un ciclo ricorsivo.
  • Si sceglieranno come temi di fondo, onde espandere la base culturale scolastica, una serie di argomenti duali: l’io l’inconscio, l’irrazionale ed il razionale, la poesia e la scienza, la mente ed il corpo, energia ed inquinamento con i relativi aspetti tecnici, conti compresi, evoluzione dei viventi e creazione continua, ecc…, che verranno trattati a lungo e senza scadenza essendo essi la base di buona parte della conoscenza sia verso l’esterno sia verso l’interno e colgono i principali dibattiti ancora caldi alla frontiera delle ricerca.
  • Altro argomento che permea tutta la conoscenza in specie del mondo occidentale riguarda le origini e l’evoluzione delle “cose” (origine della vita, origine dell’uomo, origine delle montagne, origine del sistema solare, del cosmo …)
  • Altro tema riguarda il significato profondo del paradosso e dell’antinomia che appaiono improvvsi in molti ambiti di conoscenza (forse nelle vicinanze delle uscite dalle trappole di Wittghestein).
  • Tutto questo sullo sfondo delle teorie della conoscenza in particolare il Falsificazionismo popperiano e delle teorie dell’apprendimento in particolare la psicologia culturale di J. Bruner.
  • In ultimo, non certo come importanza, ci divertiremo ad applicare la statistica alle serie di dati utilizzando in specie il programma R e il Mathematica di Wolfram, perchè riteniamo che oggi per falsificare il “discorso”  relativo alle scelte sociali, imposte dalle relazioni tecniche spesso complici del potere, sia necessario un uso esteso, oculato e critico di serie storiche da analizzare. Il cittadino dovrà pur ‘imparare a fare il conto’ se è poi lui che deve pagarlo!
  • Non avere paura di chiedere,
  • compagno! Non lasciarti influenzare, verifica tu stesso! Quel che non sai tu stesso, non lo saprai. Controlla il conto, sei tu che lo devi pagare. Punta il dito su ogni voce, chiedi: e questo, perché? Tu devi prendere il potere.
  • [Bertolt Brecht 1933]

R. Bacci – PF. Bianchi – P. Fidanzi –  F. Gherardini -L. Mannucci – N. Pistolsi – P. Pistoia – A. Togoli,  R. Veracini –> promotori del blog

(PF. Bianchi  è  l’ amministratore del sito)

Praticamente da sempre il dott. Piero Pistoia ha svolto tacitamente la funzione di EDITORE del Blog e dal 2018 è stato nominato tale, ufficialmente, da WordPress insieme al dott. Paolo Fidanzi ed alla prof.ssa Nara Pistolesi. Interpellato anche il prof. Gherardini, ha rifiutato per gravi ragioni personali.

UN PERCORSO VERSO IL ‘PERIODOGRAMMA’ ED ALTRO: CONCETTI PORTANTI DELL’ANALISI DELLE SERIE STORICHE; scritti di P. Pistoia (con il supporto di Pf. Bianchi)

Curriculum di piero pistoia

cliccare su:

piero-pistoia-curriculumok (#)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

PER LEGGERE IL POST IN PDF CLICCARE SUL LINK SOTTO; PER TORNARE A LEGGERE LO SCRITTO DOPO IL LINK, TORNARE INDIETRO PREMENDO SULLA FRECCIA IN ALTO A SINISTRA

VERSO IL PERIODOGRAMMA0

ATTENZIONE QUESTO LAVORO VIENE CONTINUAMENTE DANNEGGIATO SPECIALMENTE NEGLI SCRIPTS NONOSTANTE LE CORREZIONI! (Piero Pistoia)

UN PERCORSO VERSO IL ‘PERIODOGRAMMA’ ATTRAVERSO ALCUNI CONCETTI PORTANTI DELL’ANALISI DELLE SERIE STORICHE

ATTENZIONE: INTERVENTI IN VIA DI COSTRUZIONE! La via si fa con l’andare!

PREMESSA

L’autore di  questo scritto, prof. Piero Pistoia, docente di Fisica, avvalendosi del supporto dialettico del collega di Matematica, prof. Pier Francesco Bianchi, stanno lavorando ad un progetto per cercare di automatizzare il processo di analisi di una serie storica reale, usando il linguaggio R ed il MATHEMATICA di Wolfram, cercando di usare comandi di basso livello. Ci apriamo il sentiero nell’andare per cui non sarà rettilineo ma complesso e intrecciato e spesso dovremo tornare indietro, persi nei meandri di questo ‘zibaldone’  alla Leopardi di statistiche e programmazioni. Una cosa è certa però: ci stiamo divertendo e andremo avanti e forse chissà se ci fermeremo.

L’obbiettivo di questo lavoro è fornire strumenti direttamente operativi al lettore perché possa scoprire all’interno di una serie storica componenti rilevanti della sua variazione. Faremo una sintesi argomentativa sui concetti di statistica implicati nello studio di una serie storia (correlogramma, periodogramma, media mobile, regressione lineare, analisi dei residui…) fino a ‘leggere’ all’interno di serie specifiche, seguendo un itinerario guidato.

Abbiamo iniziato “forzando” R a raccogliere informazioni preliminari sulla serie in studio per poi intervenire su essa correggendo ed aggiustando ( correzione degli outliers, interpolazioni per mancanza di dati, ecc.). Sorge poi il problema di cosa cercare all’interno dei dati e come cercarlo a partire da grafici e altri tests (correlogrammi e periodogrammi ecc.). A questo punto si è posto il problema di “fittare” una combinazione di onde del seno ai dati di una serie storica sperimentale usando il metodo dei minimi quadrati. Una volta imparato come calcolare i coefficienti di una regressione lineare, appunto condotta sui dati con una combinazione polinomiale di funzioni sinusoidali, cercheremo di precisare con esempi il processo chiamato Analisi armonica di Fourier.

Ma oggi, in questo contesto, ci siamo soffermati a riflettere su come possiamo, utilizzando sempre il linguaggio R e il MATHEMATICA di Wolfram, costruire il cosiddetto Periodogramma di una serie storica che possa individuare, se ci sono, oscillazioni sinusoidali rilevanti. Il Periodogramma in generale riporta sulle ascisse valori in successione, ognuno dei quali rappresenta il numero delle oscillazioni complete che quella particolare onda compie in n dati (così,se n=60, 5 rappresenta la presenza nei dati di una oscillazione che fa 5 cicli completi in 60 dati, cioè di periodo 12). Le oscillazioni rilevanti, suggerite dal Periodogramma, possono essere tolte poi dai dati originali (destagionalizzazione), per esempio, con medie mobili opportune, onde iniziare la scomposizione della serie stessa e così via.
Vi proponiamo allora, nel prosieguo, attraverso un percorso piuttosto lungo ed articolato, punteggiato di concetti ed esempi di calcolo, come obbiettivo ‘regolativo’ s.l., versioni di Periodogramma,  scritte in R e in Mathematica di Wolfram (Piero Pistoia), che pur non ottimizzate, riescano efficacemente a funzionare su due esempi, uno da noi controllato ed l’altro reale.

Tutto quello che verrà detto durante questo lavoro, pur non avendo la pretesa di esaurire le problematiche ivi implicate (per questo vedere bibliografia), speriamo aiuterà il lettore, se interessato, a seguire l’analisi di una serie storica, attraverso cammini meno usuali e teorici, fornendo strumenti operativi per poter affrontare studi più organizzati in un secondo momento.

I conti possono essere seguiti su una qualsiasi spread-sheet oppure attraverso tre programmi  in Qbasic allegati (scritti dallo stesso Piero Pistoia), poco curati nella forma, ma che contengono routines efficaci, e/o utilizzando, come abbiamo accennato, i comandi di due grossi programmi di statistica, il programma R ed il linguaggio del Mathematica di Wolfram.

IL CORRELOGRAMMA: UNA ‘LENTE’ PER STUDIARE IN UNA SERIE STORICA VARIE COMPONENTI DELLA SUA VARIAZIONE

All’interno di una serie storica reale, per es., dei 60 ( mg/l) dati mensili yt della concentrazione As nelle acque della Carlina, che a più riprese analizzeremo, è possibile individuare varie serie componenti: a) una o più serie stagionali, nel senso lato della parola, cioè oscillazioni regolari, periodiche, in accordo col calendario o con l’orologio; b) una serie corrispondente al trend o variazione a lungo termine della media, che di fatto comprende tutte le componenti cicliche la cui lunghezza d’onda supera la serie temporale osservata, cioè supera lo stesso range dei dati; c) uno o più cicli, cioè fluttuazioni irregolari intorno ad una tendenza a lungo termine, non periodiche (almeno all’interno dei dati) talora intermittenti, di durata variabile, non correlate al calendario, i cui effetti durano oltre i dati, ma coglibili anche all’interno del range dei dati,  d) la componente irregolare o casuale (random) che riassume lo “white noise” e infine e) qualche componente occasionale o erratica (periodo di siccità, terremoto, sciopero…).

Sintetizzando, possiamo ragionevolmente affermare che i dati annuali tipicamente esibiscono un trend ed un effetto ciclico, ma non un effetto stagionale. Ci sono però anche eccezioni: si pensi agli effetti stagionali di periodo superiore a qualche anno di alcuni fenomeni astronomici (ciclo delle macchie solari, di periodo circa 11 anni, che forse può attivare altri fenomeni analoghi nell’atmosfera). I dati mensili  e quelli ‘quaterly’ (relativi ad 1/4  di anno, cioè trimestrali), probabilmente mostrano trend e influenze stagionali, ma usualmente non componenti cicliche a meno che i dati coinvolgano molti anni. In generale gli effetti stagionali sono visti come oscillazioni ripetitive entro il tempo di un anno. Sono comprese negli effetti stagionali anche le oscillazioni all’interno delle 24 ore per dati orari e le oscillazioni all’interno della settimana e all’interno del mese per dati giornalieri.

Prima di cercare di scomporre nelle sue componenti elementari una serie storica, conviene dare uno sguardo al suo contenut con un grafico opportuno,  con lo strumento Correlogramma ( [1] pagg. 376-390)  e  con il Periodogramma, che presenteremo definitivo al termine del lavoro, strumenti essenziali anche per l’analisi dei RESIDUI.

Il coefficiente di correlazione di Pearson misura la correlazione fra due variabili aleatorie che dipendono linearmente l’una dall’altra. Ha valore +1 se le due variabili variano linearmente in fase e -1 se variano in controvase. Questo coefficiente acquista valori fra -1 e +1. Il coefficiente di correlazione di Pearson dipende dalla covarianza, covarianza=Somma[(x-xm)*(y-ym]/n, e dalla deviazione standard di entrambe le variabili: coeff. di correlazione=Covarianza/(DSx*DSy).

I coefficienti di auto-correlazione rh, dove h=0,1,2…q con q minore od uguale a (n-2)/2, sono coefficienti di correlazione, calcolati per ogni valore di h, che misurano la concordanza o la discordanza fra i valori di una serie storica e quelli della stessa però slittati di h unità di tempo (lag h), consentendo di analizzare la sua struttura interna, ossia i legami fra i termini della stessa ([8] 18-20).

rh = Σi[(y(t)-ym)(y(t+h)-ym)]/[(n-h)*Σj(y(t)-ym)^2/n)] dove i va da t=1…n-h e j va da t=1 … n-h # da togliere l’ultima h!!!

in alcuni testi viene abolito il fattore n/(n-h).

Tale formula presenta la semplificazione di poter utilizzare una media unica per le yt (quella dei dati originali), presupponendo una situazione stazionaria ([8] pag. 19 e [2] pag. 133). In particolare ro=1 (lag h=0), nessun slittamento e gli altri rh assumono valori fra +1 (completa concordanza) e -1 (totale discordanza).
Il correlogramma è la rappresentazione grafica dei coefficienti di auto-correlazione, che sono (n-2)/2, in funzione degli slittamenti (lag h) e ci permette di vedere se la serie storica possiede qualche regolarità interna.
I coefficienti di auto-correlazione di dati random hanno distribuzione campionaria che può essere approssimata da una curva gaussiana con media zero e errore standard 1/√(n). Questo significa che il 95% di tutti i coeff. di auto-cor., calcolati da tutti i possibili campioni estratti, dovrebbero giacere entro un range specificato da: zero ± 1.96*1/√(n) (1.96 errori standard). I dati cioè della serie saranno da considerare random, se i coeff. di auto-cor. staranno entro i limiti:

-1.96*(1/√n) ≤ rh ≤ +1.96*(1/√n)      fascia dell’errore: +/- 2/√n

Per l’interpretazione dei correlogrammi vedere [8] 20-25.

– In una serie storica completamente casuale, i cui successivi valori sono considerati tutti indipendenti fra loro (non correlati), tutti i valori rh,  eccetto ro che è sempre +1 ( correlazione della serie con se stessa), oscilleranno  in maniera casuale intorno allo zero entro la fascia dell’errore.

– I coefficienti di correlazione per dati stazionari (assenza di trend) vanno velocemente a zero dopo 3-4  lags di tempo (forse fino a 5), mentre nella serie non stazionaria, essi sono significativamente diversi da zero per varie unita di tempo anche se tendono a diminuire, es., serie che contiene trend (vedere graf. yt). Nella serie stazionaria esiste una persistenza di valori positivi o negativi a breve termine (se per es., il valore è più alto della media in un mese, lo sarà anche in uno o due mesi successivi. Data la brevità di questo fenomeno (fino a 5 lags max) si riscontra anche in correlogrammi di componenti erratiche.

-Anche col periodogramma (talora detto spettrogramma) è possibile individuare componenti oscillanti, ma anche i trends così da poterli eliminare dalla serie. Come primo input: qualsiasi serie temporale composta di n osservazioni ugualmente spaziate può essere decomposta tramite il metodo dei minimi quadrati in un numero di onde del seno di data frequenza, ampiezza e fase, soggette alle seguenti restrizioni: se n è dispari, allora il numero max di onde fittate è (n-1)/2, se n è pari tale numero è N/2-1. Da notare che in una serie temporale discreta, poichè non appaiono di fatto angoli da trattare, nella definizione di lunghezza d’onda e fase si fa riferimento alle unità di tempo usate per definire la serie, o al numero delle osservazioni n che ‘costruiscono’ la lunghezza d’onda.

– Se la serie storica presenta oscillazioni (stagionali:  oscillazioni orarie, giornaliere, settimanali, mensili …), anche il correlogramma tende ad assumere valori positivi e negativi, oscillando con lo stesso periodo della serie in studio fino a smorzarsi ai lags più elevati. Inoltre, se esiste, per es., una componente stagionale di periodo 12 mesi, il valore corrispondente al lag 12 sarà significativamente diverso da zero. 

Talora però la lettura del correlogramma risulta ardua. Un modo veloce e quantitativo per testare l’ipotesi che esista all’interno di una serie storica correlazione fra i suoi termini, cioè i termini non siano indipendenti, è somministrare alla serie il test di Durbin e Watson ([3] 949-951), la cui statistica è espressa dalla formula:

d = Σ[e(i)-e(i-1)^2]/Σei^2

La sommatoria al numeratore inizia al 2° termine (i=2= e coinvolge n-1 termini. la statistica d varia da 0 a 4 e quando l’ipotesi nulla è vera (autocorrelazione assente) d dovrebbe essere vicino a 2. Il test permette di decidere di respingere l’ipotesi nulla, di accettarla ovvero essere inconclusivo. Utilizzando la tabella opportuna  (allegata) si ottengono i valori critici dl e du che servono per la decisione: all’interno dell’intervallo dl-du, la situazione è incerta; a sinistra di dl, si respinge  l’ipotesi nulla.

Il programma CORR, scritto da Piero Pistoia nel glorioso Qbasic (saturo di nostalgia e giovinezza) e allegato a questo scritto, permette il calcolo dei coefficienti di autocorrelazione con l’errore e il calcolo della statistica di Durbin-Wtson; un qualsiasi programma di grafica  poi permetterà di costruire il correlogramma sottoponendo ad esso i coefficienti di auto-corr. trovati. Il correlogramma verrà naturalmente ottenuto anche direttamente con i linguaggi di livello R ed il Mathematica di Wolfram. CORR infine fa anche l’analisi armonica.

ESERCIZI DI COSTRUZIONE E ‘LETTURA’ DEL CORRELOGRAMMA

Consideriamo la serie storica mensile yt di 60 dati della concentrazione As già nominata. Inseriamo in CORR vari vettori dati da analizzare, mutuati da questo studio (per es., yt, ESAs (Effetto stagionale), Yt1=yt-ESAs (Ciclo+Trend+Random), Yt1_smussato dai random …), nei comandi DATA al capoverso SERIE STORICA ORIGINALE. Successivamente possiamo trasformare in remarks le precedenti linee yt e aprire quelle successive, EFFETTO STAGIONALE As (ESAs), se gira il programma, troveremo il dati del correlogramma per la serie ESAs. Per aprire e chiudere i DATA si usa l’apice . Naturalmente possiamo introdurre la serie che vogliamo (es., RESIDUI..). Il programma nei due casi accennati, lanciato, fornirà 1) La tabella dei coefficienti di auto-correlazione 2)La statistica di Durbin Watson per controllare se c’è autocorrelazione nella serie in studio 3)La statistica di LinMudholcar che è un test sulla gaussiana; 4) L’analisi di Fourier (per ora sospesa). Basta riscrivere le linee di programma nella console del Qbasic.
Scriveremo poi un programmino in R per ottenere gli stessi risultati, molto più agile per avere comandi di livello superiore .Chi vuole può ottenere gli stessi risultati anche con lo straordinario Mathematica di Wolfram o addirittura con EXCEL.

SCRIPT IN Qbasic

‘ PROGRAMMA N. 1

CLS
PRINT TAB(15); “TESTS DI AUTOCORRELAZIONE E NORMALITA'”
PRINT
PRINT TAB(14); “Programma scritto a cura del DOTT. PIERO PISTOIA”
LOCATE 10, 5
PRINT “Il programma calcola: “: PRINT
PRINT TAB(5); “1-I coefficienti di AUTOCORRELAZIONE”
PRINT TAB(5); “2-Il test di DURBIN-WATSON, che misura la correlazione interna”
PRINT TAB(5); “3-Il nuovo test di LIN-MUSHOLKAR per la normalit…”
PRINT TAB(5); “4-L’ANALISI SPETTRALE LINEARE per il periodogramma”
PRINT : PRINT TAB(5); ” Nei punti 2 e 3 consultare le tabelle; dei’cutoff values'”
2 IF INKEY$ = “” THEN 2
CLS
DIM x(100), m(100), sd(100), L(100), rh(100), e(100), g(100), f(100)
INPUT “Immetti il numero dei dati “, n
INPUT “Immetti il numero dei lags h “, n1
‘FOR i = 1 TO n
‘PRINT “x(“; i; : INPUT “)=”, x(i): f(i) = x(i)
‘s(0) = s(0) + x(i)
‘NEXT i
‘GOTO 14

PRINT “CALCOLO DEI COEFFICIENTI DI AUTOCORRELAZIONE”
PRINT
CLS : PRINT “TABELLA DEI COEFFICIENTI DI AUTOCORRELAZIONE”: PRINT
LPRINT “TABELLA DEI COEFFICIENTI DI AUTOCORRELAZIONE”: LPRINT
FOR i = 1 TO n
READ x(i): f(i) = x(i)
s(0) = s(0) + x(i)
NEXT i
xm = s(0) / n
PRINT
PRINT “LAG h”, “COEFF. AUTOCORRELAZIONE”
PRINT
FOR h = 1 TO n1
FOR t = 1 TO n – h
so = (x(t) – xm) * (x(t + h) – xm): s(1) = s(1) + so
NEXT t
FOR t = 1 TO n
so = (x(t) – xm) ^ 2: s(2) = s(2) + so
NEXT t
rh(h) = n * s(1) / ((n – h) * s(2))
PRINT h, rh(h)
s(1) = 0: s(2) = 0
NEXT h
er = 2 / (SQR(n))
PRINT
PRINT “ERROR +/- “, er
s(0) = 0: s(1) = 0: s(2) = 0
PRINT
73 a$ = INKEY$: IF a$ = “” THEN 73
23 LPRINT “LAG H”, “COEFF.AUTOCORRELAZIONE”: LPRINT
FOR i = 1 TO n1: LPRINT USING “###”; i;
LPRINT USING ” #.###”; rh(i): NEXT i
LPRINT : LPRINT “er=”, er

GOTO 20

13 RESTORE
CLS : s(1) = 0: s(2) = 0
PRINT : PRINT “LIN-MUDHOLKAR TEST PER LA GAUSSIANA (TEST DI NORMALITA’)”
21 FOR a = 1 TO n
FOR i = 1 TO n
b = i
IF i = a THEN READ x(i): k = 1: GOTO 7
READ x(b): v = x(b)
IF k = 1 THEN b = i – 1
x(b) = v
7 NEXT i
k = 0
‘FOR i = 1 TO n – 1
‘PRINT x(i); : NEXT i
GOSUB 1000
s(1) = 0: s(2) = 0
RESTORE
NEXT a

‘SERIE STORICA ORIGINALE eliminati 3 autliers
‘ DATA .033,.043,.051,.059,.061,.063,.053,.036,.046,.056,.063,.048,.053,.043
‘ DATA .066,.053,.082,.06,.08,.076,.056,.036,.05,.053,.056,.058,.061,.063,.065
‘ DATA .068,.0815,.095,.079,.063,.069,.074,.08,.0765,.073,.0695,.066,.093,.083
‘ DATA .073,.063,.074,.067,.06,.086,.08,.073,.067,.089,.064,.087,.079,.07,.065
‘ DATA .06,.063

‘EFFETTO STAGIONALE (modello additivo)
‘DATA .0022,-.0030,.0002,-.0053,.0070,.0026,.0107,.0054,-.0042,-.0083,-.0037
‘DATA -.0075,.0022,-.0030,.0002,-.0053,.0070,.0026,.0107,.0054,-.0042,-.0083
‘DATA -.0037,-.0075,.0022,-.0030,.0002,-.0053,.0070,.0026,.0107,.0054,-.0042
‘DATA -.0083,-.0037,-.0075,.0022,-.0030,.0002,-.0053,.0070,.0026,.0107,.0054
‘DATA -.0042,-.0083,-.0037,-.0075,.0022,-.0030,.0002,-.0053,.0070,.0026,.0107
‘DATA .0054,-.0042,-.0083,-.0037,-.0075
DATA 30,29,34,61,54,63,62,41,43,30,35,19,21,25,36

s(1) = 0: s(2) = 0: s(3) = 0: s(4) = 0: s(5) = 0

FOR i = 1 TO n

s(1) = s(1) + m(i): ‘Sum(X)

s(2) = s(2) + m(i) ^ 2: ‘SUM((X)^2)

s(3) = s(3) + m(i) * L(i): ‘SUM(X*Y)

s(4) = s(4) + L(i): ‘SUM(Y)

s(5) = s(5) + L(i) ^ 2: ‘SUM((Y)^2)

NEXT i
PRINT
‘PRINT s(1); s(2); s(3); s(4); s(5)
r = (n * s(3) – s(1) * s(4)) / (SQR(n * s(2) – s(1) ^ 2))
r = r * SQR(n * s(5) – s(4) ^ 2)

PRINT
PRINT “r=”, r
PRINT : PRINT
74 IF INKEY$ = “” THEN 74
LPRINT “STATISTICA DI LIN-MUDHOLKAR PER LA GAUSSIANA”
LPRINT : LPRINT “r=”, r
8 IF INKEY$ = “” THEN 8 ELSE 14
20 PRINT
PRINT “TEST STATISTICO DI DURBIN-WATSON PER L’AUTOCORRELAZIONE”
PRINT : PRINT
s(1) = 0: s(2) = 0
FOR i = 2 TO n
y = x(i) – x(i – 1)
s(1) = s(1) + y ^ 2
NEXT i
FOR i = 1 TO n
y = x(i) ^ 2
s(2) = s(2) + y
NEXT i
DW = s(1) / s(2)
PRINT “DW= “, DW
72 a$ = INKEY$: IF a$ = “” THEN 72
LPRINT : LPRINT “STATISTICA DI DURBIN-WATSON PER L’AUTOCORRELAZIONE”
LPRINT : LPRINT “DW=”, DW
LPRINT
1 a$ = INKEY$: IF a$ = “” THEN 1 ELSE 13
14 PRINT : PRINT ” ANALISI DI FOURIER E PERIODOGRAMMA”: PRINT
t = n
p1 = INT((n – 1) / 2) ‘max frequenza
c1 = COS(2 * 3.1415926# / t)
s1 = SIN(2 * 3.1415926# / t)
s = 0: p = 0
c = 1
210 u1 = 0: u2 = 0
k = t
230 u = f(k) + 2 * c * u1 – u2
u2 = u1
u1 = u
k = k – 1
IF k 0 THEN 340
a = a / 2
PRINT “COEFFICIENTI DI FOURIER”
PRINT TAB(4); “P”; TAB(12); “ALFA”; TAB(21); “BETA”
LPRINT : LPRINT “COEFFICIENTI DI FOURIER”: LPRINT
LPRINT TAB(3); “P”; TAB(12); “ALFA”; TAB(21); “BETA”: LPRINT
340 PRINT USING “##.##^^^^”; p; a; b: LPRINT USING “###”; p;
LPRINT USING ” ##.##^^^^”; a; b
IF p = 0 THEN 480
e(p) = SQR(a * a + b * b)
t2 = ABS(a / b)
t2 = 360 / 2 / 3.1415926# * ATN(t2)
IF b > 0 THEN 450
IF a > 0 THEN 430
t2 = 180 + t2
GOTO 470
430 t2 = 180 – t2
GOTO 470
450 IF a > 0 THEN 470
t2 = 360 – t2
470 g(p) = t2
480 IF p = p1 THEN 540
q = c1 * c – s1 * s
s = c1 * s + s1 * c
c = q
p = p + 1
GOTO 210
540 PRINT : PRINT
PRINT ” ANALISI ARMONICA”: PRINT
LPRINT : LPRINT “ANALISI ARMONICA”: LPRINT
PRINT ” FR”; TAB(6); “FREQ1”; TAB(15); “PERIOD”; TAB(23); “AMPIEZZA”; TAB(34); “FASE”
LPRINT ” FR”; TAB(6); “FREQ1”; TAB(15); “PERIOD”; TAB(23); “AMPIEZZA”; TAB(34); “FASE”
LPRINT
FOR i = 1 TO p1: k1 = n / i: k2 = i / n
PRINT USING “###”; i;
PRINT USING “##.##^^^^”; k2; k1; e(i); g(i)
LPRINT USING “###”; i;
LPRINT USING “##.##^^^^”; k2; k1; e(i); g(i)
NEXT i
75 IF INKEY$ = “” THEN 75
CLS
15 END

1000 FOR i = 1 TO n – 1
s(1) = s(1) + x(i)
NEXT i
m(a) = s(1) / (n – 1)
FOR i = 1 TO n – 1
y1 = x(i) – m(a)
s(2) = y1 ^ 2 + s(2)
NEXT i
sd(a) = SQR(s(2) / (n – 2))
L(a) = sd(a) ^ (2 / 3)
‘PRINT m(A); sd(A); l(A)
RETURN

SCRIPTS IN R PER IL CALCOLO DEI COEFFICIENTI DI CORRELAZIONE DELLA SERIE STORICA REALE yt IN VIA DI ANALISI A del dott. Piero Pistoia

QUESTO PARAGRAFO E’ in via di correzione!

# Intanto trascriviamo nel vettore yt i 60 dati della conc. As da cui partire. Impariamo poi a calcolare con R gli altri 5 vettori dati che faranno parte dell’analisi della nostra serie
reale e quindi della nostra esercitazione. Calcoliamo come primo vettore Mt (media mobile di ordine  12 su yt.

yt=c(.033,.043,.051,.059,.061,.063,.053,.036,.046,.056,.063,.048,.053,.043,.066,.053,.082,.06,.08,.076,.056,.036,.05,.053,
.056,.058,.061,.063,.065,.068,.0815,.095,.079,.063,.069,.074,.08,
.0765,.073,.0695,.066,.093,.083,.073,.063,.074,.067,.06,.086,.08,.073,.067,.089,.064,.087,.079,.07,.065,.06,.063)

t=1

#Come primo passo grafichiamo i dati e osserviamo se ci sono regolarità all’interno (trend, oscillazioni), precisiamo le ipotesi con un correlogramma ed un periodogramma, I dati sono mensili: Ipotizziamo comunque una oscillazione di periodo 12.

# Calcoliamo, come primo vettore, Mt (media mobile centrata e pesata di ordine 12 su yt).

yt=as.vector(yt) ; n=length(yt); Mt=c()
for(t in 7:n){Mt[t] = ((yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+
yt[t-1]+yt[t]+yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+(yt[t+6])/2)/13}

Mt # non gira! dice che esiste una } in più. Ris=0! In effetti, non so perchè, è apparsa una tonda in più, che continua ad apparire anche se corretta!

for(t in 7:n){Mt[t] = (yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+
yt[t-1]+yt[t]+yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+(yt[t+6])/2)/13}

mt=filter(yt,filter=rep(1/13,13))
# calcolo della Mm col comando filter di R: confrontare i due risultati
mt #OK

# in Mt ci sono i 48 (60-12) dati Media mobile di yt, da cui costruisco i 12 Fattori Stagionali (FStag) facendo la media dei 4 gennaio, dei 4 febbraio ecc. a partire da luglio, perchè Mt iniziava con luglio.
FSTag0=matrix(Mt, ncol=12, byrow=T)
# matrice di 4 righe (valori dei 12 mesi dei 4 anni) e 12 colonne con in ognuna le 4 conc. dei mesi dello stesso nome a partire da un luglio.
FStag1=colMeans(FSTag0)
#  in FStag1 trovo le 12 medie dei 4 mesi dello stesso nome (inizio luglio, fine giugno)
FStag=c( ,FStag1[7:12], FStag1[1:6]) # da controllare! Ordino da gennaio. NON OK!

Continua ad apparire una , in più!!

FStag=c( FStag1[7:12], FStag1[1:6]) # Ordino da gennaio.  OK!

FStag=c( FStag1[7:12], FStag1[1:6]) # da controllare! Ordino da gennaio. OK, ora sì
ESAs=rep(FSTAG,5) # EFFETTO STAGIONALE As #Nonostante le correzioni continua a scrivere la variabile FSTAG sbagliata!

ESAs=rep(FStag,5) #OK

ESAs
Yt1=yt-ESAs # Ciclo+Trend+Random
Yt1
Yt1s=as-vector(Yt1s) # smusso Yt1 con Mm 3*3 #Nonostante le varie correzioni appare una al posto di un .

Yt1s=as.vector(Yt1s) # OK

Yt1s=c()
for(i in 1:60){Yt1s[i]=(Yt1[i-2]+2*Yt1[i-1]+3*Yt1[i]+2*Yt1[i+1]+
Yt1[i+2])/9}
Yt1s # yt1 senza random; cioè Ciclo+Trend
RD=Yt1-Yt1s # forse si tratta solo di random: il Ciclo?

#Riportiamo in una tabella i 5 vettori dell’analisi su yt

#data <- data.frame(t,yt,ESAs,Yt1,RD)

# Facciamo i 5 correlogrammi dei vettori trovati: yt, ESAs, Yt1, Yt1s, RD
coryt=acf(yt)
coryt
corESAs=acf(ESAs)
corESAs
corYt1=acf(Yt1)
corYt1s=acf(Yt1s)
corYt1s
corRD=acf(RD)
# Interessante abbinare il correlogramma con il periodogramma.

ESEMPIO GUIDA IN R SULL’ANALISI DELL’ARSENICO: STAGIONALITA’ TRIMESTRALE

-Ho 60 dati mensili iniziali della concentrazione As delle sorgenti della Carlina (Siena). Col comando (comando in s.l.)) “matrix” organizzo per righe i 60 dati in 20 righe 3 colonne. Col comando “rowMeans” calcolo le 20 medie di riga che sono le medie trimestrali che ho chiamato ‘medietrim’ (FIG.1) che consideriamo come vettore dati da analizzare. Col comando “lm” trovo la retta di regressione sulle 20 medie trimestrali (FIG.1). La retta, pur significativa, non è molto adeguata ai dati; spiega solo il 48% della variazione. Trovo i valori predetti dalla retta con la funzione “predict”. Tolgo i 20 valori predetti dai 20 iniziali ottengo una nuova serie che è quella iniziale senza il trend rettilineo  nominata ‘detrend_trim’ (FIG.2); ancora con il comando matrix riorganizzo per riga ‘detrend_trim’ in 5 righe, 4 colonne. Nelle 4 colonne ci vanno i 4 valori trimestrali nell'”anno medio”. Infatti nella prima colonna ho i 5 valori del 1°trimestre dei 5 anni; nella seconda colonna i 5 valori del 2° trimestre e così via. Con il comando “colMeans” faccio le medie di queste 4 colonne ottenendo il Fattore stagionale trimestrale, costituito da 4 termini che estendo ai 5 anni (FIG.3 e Fig.4) con il comando ‘rep’. I 20 dati risultanti costituiscono l’Effetto stagionale. Togliamo ancora dai 20 valori originali (medietrim) l’Effetto Stagionale così ottenuto: ne risulta una nuova serie che è la serie iniziale priva dell’oscillazione stagionale.  ma con trend e residui (medieAdj_trim). Su questa serie con “lm” faccio una nuova regressione lineare con aumento dell’R-q fino a 58% (FIG.5), ottenendo come risultato della regressione ‘fitadjtrim. Potrei ottenere ora i residui sottraendo la retta della FIG.5 dai valori plottati. In effetti calcolo i residui col comando “resid” e plotto i residui (FIG.6). Sui residui applico il test di D.-Watson (forse converrebbe interpolare l’elemento 11); applico il comando acf su res (concludo: correlazione assente);  osservo infine i 4 grafici finali relativi ai residui ottenuti con plot(fitadj_trim). Conclusione: ritengo l’analisi  accettabile!

SCRIPTS IN R

library(graphics)
library(tseries)
library(stats)
library(UsingR)
library(lattice)
library(lmtest)

w=c(0.033,0.043,0.051,0.059,0.061,0.063,0.053,0.036,0.046,0.056,
0.063,0.048,0.053,0.043,0.066,0.053,0.082,0.06,0.08,0.076,0.056,
0.036,0.05,0.053,0.056,0.058,0.061,0.063,0.065,
0.068,0.0815,0.095,0.079,0.063,0.069,0.074,
0.08,0.0765,0.073,0.0695,0.066,0.093,0.083,
0.073,0.063,0.074,0.067,0.06,0.086,0.08,0.073,0.067,0.089,0.064,
0.087,0.079,0.07,0.065,0.06,.063)

par(ask=T)

par(mfrow=c(1,3))

trim=matrix(w,ncol=3,byrow=T)
medietrim=rowMeans(trim)

medietrim

# FIG.1
ts.plot(medietrim,type=”l”,main=”FIG.1″) #finchè non lo sostituisco posso usare abline

w1=c(1:20)
regtrim=lm(medietrim~w1)
abline(regtrim)

summary(regtrim)

val_pred_w=predict(regtrim) #calcolo i 20 valori predetti dalla prima regressione
length(val_pred_w)
detrend_trim=medietrim-val_pred_w

#FIG.2
plot(detrend_trim,type=”l”, main=”FIG.2″)
trim1=matrix(detrend_trim,ncol=4,byrow=T)
medietrim1=colMeans(trim1)
medietrim1_5anni=rep(medietrim1,5)

#FIG.3
plot(medietrim1_5anni,type=”l”,main=”FIG.3″)

par(mfrow=c(2,2))

#FIG.4
acf(medietrim1_5anni,main=”FIG.4″)

valAdjtrim=medietrim-medietrim1_5anni #trend_ random
fitadj_trim=lm(valAdjtrim~w1)

fitadj_trim

summary(fitadj_trim)

#FIG.5
plot(valAdjtrim,type=”l”,main=”FIG.5″)
abline(fitadj_trim)

scansione0001

#ANALISI RESIDUI
dwtest(fitadj_trim, alternative=”two.sided”)
#forse potremo interpolare l’elemento 11

#FIG.6
res=resid(fitadj_trim)
plot(res,type=”l”, main=”FIG.6″)

#FIG.7
acf(res, main=”FIG.7-res”)

scansione0002

par(mfrow=c(2,2))
#FIG.8-12
plot(fitadj_trim, main=”FIG.8-12″)

scansione0004

BLOCCO_NOTE_TRIMAs

ESTENSIONE DELLA PRECEDENTE GUIDA  A DIVERSE SERIE STORICHE (dati orari, giornalieri, settimanali, mensili…):  BREVI RIFLESSIONI. FATTORI ED EFFETTI STAGIONALI

Si parte da dati orari – Si abbiano dati orari, es.,  per un anno (n=24*365 dati). Faccio le osservazioni preliminari su questi dati (grafico, correlazione, periodogramma). Con i dati orari possiamo sbizzarrirci. Potrei con matrix organizzare n in una matrice per righe di 24 colonne e 365 righe. Con rowMeans potrei ottenere le 365 medie giornaliere su cui procedere all’analisi di dati mensili: grafico medie, trend, medie meno trend (o meno media): oscillazione+res, su cui applico ancora matrix per riga per ottenere, es., 30 colonne e 12 righe. Che cosa otterrei con rowMeans? Ottengo nella prima riga la media dei primi 30 giorni (media di gennaio), nella seconda la media di febbraio e cosi via fino alla riga 12 che sarà la media di dicembre; in definitiva rowMeans mi fornisce i dodici valori mensili che se si vuole possiamo continuare ad analizzare. Ma ipotizzo ci sia una oscillazione anche all’interno dei 24 dati orari, cioè in un giorno (Fattore stagionale orario). Per questo applichiamo invece ad n iniziale, organizzato in 24 colonne e 360 righe, colMeans. Nella prima colonna ci saranno i 360 valori relativi alle ore una, nella seconda, quelle relativi alle ore 2 … nella 24-esima i dati relativi alle ore 24 di ogni giorno. Ne consegue che colMeans calcola le 24  medie  di ogni ora del giorno di tutti i 365 giorni dell’anno in studio (media di 365 valori corrispondenti alle una, alle due…). Questo si chiama Fattore Stagionale relativo alle ore per l’anno in studio. Se volessi il Fattore stagionale mensile?  Con matrix dovrei organizzare i 360 dati in 30 righe e 12 colonne. Allora nella prima colonna andranno tutti i primi di ogni mese, nella seconda tutti i due di ogni mese, nella terza i tre di ogni mese e… nella trentesima tutti trenta del mese. Con colMeans troverei il Fattore Stagionale mensile. Per ottenere i relativi Effetti stagionali orari o mensili, ripeto con ‘rep’ rispettivamente i 24 o  i 30 valori lungo l’intero anno (365 volte per le ore e 12 volte per i mesi). In generale l’ES, se c’è, si toglie dai dati iniziali, per ottenere una serie nuova senza tale effetto (senza oscillazioni), ma contenente trend+residui. Da questa serie poi si toglie il trend e si studiano i residui per controllare se il nostro processo è sostenibile.  Potrei anche cercare il Fattore e l’Effetto stagionale settimanale (365/7= 52 settimane). La grandezza in studio cambia con i giorni della settimana? Per es., gli umani muoiono o fanno l’amore più di lunedi o di sabato? DA RIVEDERE

Link interni curati da Piero Pistoia

1-PERCHE’ RITENIAMO RILEVANTE OGGI UNA COMUNICAZIONE DIDATTICO-OPERATIVA SUL METODO DEI MINIMI QUADRATI APPLICATO ANCHE AD UN POLINOMIO TRIGONOMETRICO
2-BREVE DISCUSSIONE SULL’ ‘ARGOMENTO’ DELLA FUNZIONE SENO
3-USO DELL’ARCO-TANGENTE NEI PROGRAMMI
4-COME ‘FITTARE’ UNA COMBINAZIONE DI FUNZIONI LINEARI AI DATI DI UNA SERIE STORICA.

5-MODELLO DI REGRESSIONE LINEARE SEMPLICE: PRESENTAZIONE E ANTICIPAZIONI NECESSARIE’
6-PRIMA LINEA DI RICERCA NELLA REGRESSIONE LINEARE SEMPLICE
7-COME SI FA A VEDERE SE QUESTO MODELLO LINEARE E’ ACCETTABILE CON R. ANALISI DEI RESIDUI.
8-VARIE INFERENZE STATISTICHE CON R DOPO AVER ACCETTATO IL MODELLO CHE FITTA I DATI

9-COME SI COSTRUISCONO LE BANDE DI CONFIDENZA
10-SCRIPTS DEL PROGRAMMA IN R RELATIVO ALLA REGRESSIONE LINEARE SEMPLICE
11-COME SI FA A VEDERE SE QUESTO MODELLO E’ ACCETTABILE CON IL MATHEMATICA DI WOLFRAN Scripts di Piero Pistoia

1-PERCHE’ RITENIAMO RILEVANTE OGGI UNA COMUNICAZIONE DIDATTICO-OPERATIVA SUL METODO DEI MINIMI QUADRATI APPLICATO ANCHE AD UN POLINOMIO TRIGONOMETRICO

Uno dei problemi oggi della comunicazione culturale scientifica, sia nella Scuola sia nell’extrascolastico, è la settorializzazione continua di linguaggi sempre più evoluti, per descrivere oggetti sempre più complessi e intrisi di teoria (di “spirito” per dirlo nel linguaggio delle monadi di Leibniz). Poiché anche le scelte sociali a cui il cittadino deve essere chiamato a partecipare (se non vogliamo ritrovarci nella situazione dei nuovi analfabeti di G. Holton (1)), sono sempre più condizionate dalle relazioni tecniche degli esperti dei diversi settori, le strutture preposte alla comunicazione dovranno attivarsi per studiare il problema ed individuare i saperi che più di altri siano idonei alle scelte nell’attività sociale. “Libertà è partecipazione”, mutuando l’espressione da una canzone di Gaber, è un concetto che risuona spesso in questi ultimi tempi ora rievocato da alcuni versi di B. Brecht “Controlla il conto sei tu che lo devi pagare”, ora dal “sesto degli undici suggerimenti di un Dio” descritti da G. Conte (2) (“non accettare regole che tu stesso non ti sia dato, non adeguarti mai al pensiero della maggioranza ed alle sue mode, perché l’opinione dei più spesso non è garanzia”…).
La difficoltà incontrata nell’imparare Scienza e nell’assimilarla sembra non dipendere solo da una proposta di insegnamento più o meno efficace o gradevole, ma rimanda alla natura stessa della Scienza, che appare poco congeniale alla biologia delle mente umana (L. Wolpert, 1996 (4), parla di “scienza innaturale”). Sembra esistere cioè una discontinuità profonda fra senso comune e Scienza, con scarsa possibilità di trasferire facilmente cose della scienza al senso e all’intuito comuni e forti difficoltà ad “incarnare” i concetti scientifici. Il cervello dell’Homo sapiens, evolutosi da qualche milione a quarantamila anni fa, in interazione con un ambiente di sopravvivenza “sentito” al fine della caccia e raccolta, mediate attraverso i primi strumenti litici, la prima tecnologia che riusciva a costruire, è progetto di un genoma rimasto, fin da allora pressoché invariato, in eredità alla specie . Infatti a partire da circa 40000 anni fa il cervello umano iniziò a controllare l’evoluzione: invece di continuare a modificarsi con l’ambiente, modificava l’ambiente a sé (evoluzione da biologica a culturale di Dobzansky). Così oggi possediamo pressoché lo stesso cervello del nostro lontano antenato cacciatore raccoglitore e le pulsioni ereditate sono le responsabili delle limitate potenzialità del nostro senso comune non previsto per la comprensione scientifica, ma semmai per una tecnologia sganciata dalla scienza. L’attività scientifica può procedere solo “rompendo” con la conoscenza prescientifica ed il senso comune, come fanno gli animali sagaci di Rilke, che, sagaci appunto ed avventurosi, si sentono a disagio nella situazione pacata e di certezza in cui si trovano. Non si tratta di un prolungamento o raffinamento o ampliamento del senso comune come talora si legge, ma di qualcosa di nuovo: una specie di senso per la comprensione scientifica.. “Finchè la Scuola non fa capire quale spostamento di quadri concettuali è necessario per impadronirsi di alcuni piccoli elementari pilastri della Fisica e della Biologia, la Scuola non ha risposto alle domande a cui dovrebbe rispondere” (P. Rossi, 1996, (5)).
Una possibilità ipotetica di indebolire il senso comune si propone con un approfondimento dei processi di comprensione scientifica in un insegnamento, a livello orizzontale, intensivo e sostenuto dall’uso di una programmazione il più possibile congeniale ai processi della natura (linguaggi come il Mathematica di Wolfram) e, a livello verticale, in un insegnamento a spirale (proposto sia dal primo sia dal secondo Bruner (6)) in più riprese nel tempo. Infatti, come suggerisce la Teoria del Darwnismo Neurale del neurobiologo G. Edelman, 1998 (7), all’interno del cervello sotto la pressione delle argomentazioni collegate alla comprensione dei concetti scientifici, si possono costituire nuovi circuiti cerebrali (selezionando gruppi neurali con l’aprire o chiudere sinapsi), per cui a lungo andare quel pezzo di cultura si “incarna” (senza apportare modifiche al genoma?), innescando però processi intuitivi e creativi con arricchimento del senso comune rispetto all’argomento in studio. Si viene così a favorire quel processo automanico ed inconsapevole (Einfhunlung=immedesimazione) che potrebbe catalizzare ipotesi creative, ovvero indovinare il mondo.
La rapida obsolescenza dei concetti scientifici acquisiti nella scuola, le possibile tendenze riduttive delle nuove riforme che sembrano indirizzare l’insegnamento, in maniera più o meno mediata o camuffata, verso un inserimento più efficace nelle aziende, e la necessità armai stringente nella vita sociale di partecipare in modo sempre più esperto ai progetti e alle decisioni, se non vogliamo diventare cittadini tagliati fuori dalle scelte di sopravvivenza, spingerebbero verso una riformulazione dei curricola scolastici così da includere anche a livelli più bassi di scolarizzazione saperi indispensabili per queste scelte onde innescare l’insegnamento a spirale per facilitarne il trasferimento a livello di senso comune (assimilazione). Parlo dei settori culturali che riguardano per es. l’uso della Statistica, perché con essa scopriremo il profondo e talora ambiguo significato dei “grandi” numeri esprimenti misure (3), ma specialmente dell’analisi dei dati storici, sui quali e solo su essi, sarà possibile costruire oculatamente progetti e previsioni o almeno indicare con una certa probabilità i rischi per i possibili percorsi futuri.
In questo contesto proporremo, insieme a cenni sulle regressioni lineari e multilineari, già oggi oggetto dei corsi di aggiornamento per docenti di materie scientifiche, una riformulazione informatico-operativa dell’analisi di Fourier per insegnanti dell’area scientifica, privilegiando, tramite il Matematica di Wolfram e il linguaggio di R, più che le solite dimostrazioni matematiche, un modo più intuitivo e concreto di affrontare questi concetti.

(1)-Gerald Holton “Scienza, educazione ed interesse pubblico”, il Mulino, 1990.
(2)-Giuseppe Conte “Manuale di poesia” Guanda Editore,1995. pag.26
(3)-Piero Pistoia “Esempi di analisi statistica applicata”, Didattica delle Scienze, n. 180 en. 183. La Scuola, Brescia.
(4)-L. Wolpert “La natura innaturale della Scienza”, 1996, Dedalo editore.
(5)-Paolo Rossi “Intervista”, Le Scienze, aprile, 1996.
(6)-J. Bruner “La cultura dell’Educazione”, 1997, Feltrinelli.
(7)-Gerald Edelman “Darwinismo neurale. La teoria della selezione dei gruppi neuronali”, Einaudi Editore, 1995.

>BREVE DISCUSSIONE SULL’ <<ARGOMENTO>> DELLA FUNZIONE SENO

Si tratta di una breve riflessione sulla funzione seno e sui modi diversi di scrivere il suo argomento con esercitazione al computer (le notazioni usate nello scrivere le funzioni ed i loro argomenti sono quelle proposte dal programma Mathematica), per evidenziare l’influenza di questi modi sulla forma dell’onda e allenare così l’intuito sulle varie questioni, in particolare per gli insegnanti di Scienze.
Un’onda sinusoidale può avere l’espressione generale: yt=A*Sin[K*α+φ], dove alfa varia da 0 a 2π , la costante moltiplicativa K, come si vede, non ha dimensioni e rappresenta il numero delle onde complete in 360° e phi, la fase, rappresenta uno spostamento orizzontale del grafico dell’onda.

se α=0:
per φ=π/2, y=A ampiezza massima dell’onda che parte appunto dal valore max=A, diventando un’onda del coseno a fase zero;
per φ=0, A=0 e l’onda parte da zero;
per φ diverso da 0, caso generale, y=A Sin(φ).

Nel contesto di una serie storica l’eq. precedente acquista una forma leggermente diversa. Chiamiamo n il numero dei dati sperimentali misurati ad intervalli di tempo uguali (serie storica); esso è anche il numero degli intervalli di osservazione e quindi il periodo T della serie (T=n), immaginando che esista almeno un ciclo oscillativo completo in n dati (anche se può non esserci). Allora α/t= 2π/T; α=2πt/T = 2πt/n e yt=A*sin((k/n*t)*2*π+φ). Il simbolo K, talora detto impropriamente frequenza, rappresenta il numero dei cicli completi in n dati sperimentali ed è il numeratore della frequenza: f=K/n. Per vedere che cosa accade delle onde yt quando, per es., n=64 dati, A=1 e k varia da 1 a 3, e t varia da 0 a 64 con φ=0, far girare sul Mathematica di Wolfram (8) il programmino seguente (da aggiustare ai dati), mantenendone con attenzione la struttura e dove con Table si costruisce il vettore Yti dei dati ricavati dalla funzione:

n=64;A=1;
Yti=N[Table[A Sin[(K/n t) 2 Pi],{t,0,64}]], dove a K si sostituiscono prima 1 per ottenere yt (64 valori dell’espressione), poi 2 per ricavare yt1, un vettore dati ancora di numerosità 64, e infine 3 per yt2.

Per graficare questi tre vettori dati: yg=ListPlot[y,PlotJoined->True, GridLines->{Automatic,Automatic}], dove ad y si sostituisce in successione yt, yt1, yt2

Si deve cioè trascrivere sulla console del mathematica (vers. 2.2,  4.1…),  le seguenti linee di istruzioni con attenzione (rispettando maiuscole, parentesi e distanze):

n=64;A=1;
K=1 “Si ha un’onda completa in 64 dati T=n”
yt=N[Table[A Sin(K/n t) 2 Pi],{t,0,n}]];
yg=ListPlot[yt,PlotJoined->True,GridLines->{Automatic, Automatic}]

K=2 “Si hanno due onde complete in 64 dati: T=n/2”
yt1=N[Table[A Sin(K/n t) 2 Pi],{t,0,64},{t,0,n}]];
yg1=ListPlot[yt1,PlotJoined->True,GridLines->{Automatic, Automatic}]
ytgg1=Show[yg,yg1] “Le due onde sullo stesso piano cartesiano”

K=3 “Si hanno tre onde complete in 64 dati: T=n/3”
yt2=N[Table[A Sin(K/n t) 2 Pi],{t,0,n}]];
yg2=ListPlot[yt2,PlotJoined->True,GridLines->{Automatic, Automatic}]
ytgg1g2=Show[yg,yg1,yt2] “Le tre onde sullo stesso piano cartesiano (si provi a meccanizzare con un For)”

Proviamo ad ottenere gli stessi risultati col programma R (da elaborare)

Se infine n=64, A=2, k=1 e φ=45°:
yt3=N[Table[2 Sin[(k t 2 Pi)/n+Pi/4],{t,0,n}]]
yg=ListPlot[yt3,PlotJoined->True, GridLines->{Automatic,Automatic}]
Naturalmente ognuno può inventare gli esempi che vuole ed esercitarsi a piacere, una volta acquisita la sintassi di questo linguaggio.

Proviamo ad ottenere gli stessi risultati col programma R (da elaborare)

USO DELL’ARCO-TANGENTE NEI PROGRAMMI

Una precisazione specifica, a nostro avviso rilevante, va fatta sull’uso dell’arcotangente nei programmi, anche perché questi interventi sono rivolti ad insegnanti di Scienze in generale e comunque un insegnamento a “spirale” serve sempre. Per il calcolo delle fasi φ delle armoniche è necessario appunto applicare l’arcotangente al rapporto fra i coefficienti ak e bk di Fourier. L’ArcTan opera sulla tangente di un certo angolo alfa e dovrebbe riportare a video l’angolo di partenza secondo la convenzione standard per la misura degli angoli. In effetti, salvo per alcuni linguaggi con due funzioni ArcTan, una delle quali darebbe il giusto risultato, appare in generale un angolo compreso fra –Pi/2 e +Pi/2 (Pi = π nel linguaggio di Mathematica e pi in quello di R). Salvo il caso in cui alfa alla partenza cade nel 1° quadrante, sul risultato dell’ArcTan in generale dovremo operare alcune correzioni memorizzate nei programmi proposti che vale la pena ricordare. Vediamo come.

Se α  alla partenza cadeva nel 2° quadrante (da 90° a 180°), es.97° = 1.69297 rad, la tangente (-8.14435) è negativa (sen + , cos -) e l’ArcTan lo riporta nel 4° quadrante fra –Pi/2 e 0 (cioè: -83°= -1.44862 rad), per cui dovrò aggiungere 180° per avere il valore di partenza nel 2° quadrante (cioè: -83+180=97°).

Se alfa alla partenza era nel 3° quadrante (da 180°a 270°), es. 187°=3.26377 rad, la tangente (.122785) è positiva (sen – e cos -), l’ArcTan lo riporta fra 0 e Pi/2 nel 1° quadrante (7°=.122173 rad), dovrò così aggiungere ancora 180° per riportarlo al quadrante di origine, nel 3°.

Se alfa era nel 4°, es. 280°=4.88692 rad con tangente -5.671282, cioè negativa (sen -, cos +), l’ArcTan riporta un valore fra –Pi/2 e 0 (cioè: -80°= -1.39626 rad); dovrò così aggiungere a -80, 360 per avere i 280° di partenza.

Precisiamo infine i seguenti casi particolari. Se la tangente è zero (angolo di partenza 0 o 180°, seno=0 e coseno diverso da0 imponiamo che l’ArcTan sia zero. Se l’angolo di partenza è 90 ovvero 270° (seno +1 o –1 e coseno 0), imponiamo che l’ArcTan sia rispettivamente 90° o –90° (-90+360). Se infine ak=0 e bk=0, caso frequente nell’analisi di Fourier quando certe armoniche sono assenti nei dati, imponiamo che ArcTan sia 0°. vedere le istruzioni di R per portare phi al quadrante giusto.

4-COME ‘FITTARE’ UNA COMBINAZIONE DI FUNZIONI LINEARI AI DATI DI UNA SERIE STORICA.
Regressione lineare semplice, Algebra matriciale per regressioni anche Multilineari e matrice inversa con esempi di calcolo 
(vedere sul blog)

MODELLO DI REGRESSIONE LINEARE SEMPLICE: PRESENTAZIONE E ANTICIPAZIONI NECESSARIE

Il punto essenziale non è tanto quello di trattare teoricamente il metodo dei minimi quadrati (aspetto culturale abbastanza scontato), ma di prendere piena consapevolezza che tale metodo è applicabile a qualsiasi nube di punti, al limite anche omogeneamente distribuiti nel piano cartesiano, e che fornisce in ogni caso risultati! Diventa necessario e quindi obbligatorio in una ricerca seria valutare quanto questo modello sia valido di fatto (F. Anscombe,1973 ” Graphics Statistical Analysis”, American Statistician 27(1).

Secondo noi, esistono tre linee di ricerca nell’affrontare i problemi posti dai modelli di regressione.

1-        La prima linea di ricerca, minimi quadrati s.s., ci permette di capire quanto il modello ‘fitta’ bene i dati sperimentali, cioè si adatta bene ad essi (la specifica grandezza calcolata è R-quadro, quadrato del Coefficiente di Correlazione, fra l’altro (vedere dopo),  fra yi, variabile dipendente e xi indipendente.

2-     La seconda linea di ricerca, una volta soddisfatti dell’adeguatezza della retta ai dati sperimentali, ci dobbiamo mettere nelle condizioni di poter ‘misurare statisticamente ‘ anche l’adeguatezza  di quella retta sperimentale all’ipotetica retta tracciata nell’Universo di tutti i campioni possibili. In un’analisi sulla retta di regressione, è necessario che vengano rispettate una serie di ipotesi relative alle Yi della popolazione da cui proviene il campione, come 1) valori normali : cioè per ogni Xi  la distribuzione degli Yi è una gaussiana; per ogni valore cioè di Xi nell’Universo esisterà nella terza dimensione una gaussiana, le cui ascisse si trovano lungo la retta passante per Xi,Yi* parallela all’asse Y. 2) Uguali varianze (omoscedasticità: le distribuzioni gaussiane di Yi, di cui al punto 1, devono avere uguale varianza.. 3) Linearità: le medie di tutte queste distribuzioni di Yi con uguale varianza, per ogni Xi, dovranno cadere sulla retta di regressione teorica. 4) Indipendenza: tutte le osservazioni devono essere indipendenti nel senso che i valori di un dato non devono influenzare gli altri. Non ci devono essere cioè altre relazioni causali all’interno dei dati eccetto quella espressa dalla retta di regressione.

Per controllare tutte queste ipotesi necessarie al modello relative agli Xi,Yi della popolazione universo si opera a posteriori sui RESIDUI che si possono misurare essendo stime degli ‘errori veri’ (Yi-Yi*). Ciò che resta dopo aver ‘fittato’ un qualsiasi modello, si dice residuo, per ogni xi,  la differenza fra i valori yri sulla retta sperimentale (da essa predetti) ed i corrispondenti osservati o misurati della variabile dipendente yi; residuo è quello che il modello non spiega. Queste ipotesi elencate sulla variabile dipendente della popolazione universo si riflettono direttamente sugli εi  che a loro volta agiscono sui residui che dovranno avere in qualche modo lo stesso comportamento che può essere misurato. Quindi i livelli di significanza, gli intervalli di confidenza e gli altri tests sulla regressione  sono sensibili a certi tipi di violazione dei residui e non possono essere interpretati nell’usuale modo, se esistono serie discrepanze nelle assunzioni e quindi sui residui. 

In un’analisi della regressione gli εi si pensano, come già accenato, come 1) normali, 2)indipendenti, 3)con media zero e 4)varianza, sigmo-quadro, costante. Se il modello è appropriato, i residui osservati, che sono stime degli errori veri, dovrebbero avere simili caratteristiche.

I valori dei residui (resi) si stimano meglio se ogni residuo viene diviso per la stima della deviazione standard dei residui  con N-1 al denominatore del radicando, ottenendo così la serie dei residui standardizzati. I residui standardizzati con media zero  e deviazione standard 1,  sono valori positivi, se sopra la media, e valori negativi se sotto la media. Così dire che un residuo è per es., -4721, ci fornisce poca informazione; se invece la sua forma standardizzata è -3.1, ciò ci suggerisce subito non solo che il valore osservato è minore di quello predetto, ma anche che quel residuo è certamente maggiore in valore assoluto alla maggior parte dei residui, essendo più di tre deviazioni standard.

Vedere nel proseguio l’utilizzo di grafici opportuni ed altri tests (correlogramma, periodogramma, test di DURBIN_WATSON e gli svariati tests per la normalità) per valutare se la nostra curva sperimentale permette, tramite l’analisi dei residui di passare al punto 3 onde fare inferenze statistiche dal campione alla popolazione sui parametri teorici del modello, intervalli di confidenza e bande di confidenza. Da notare con attenzione che prima di aver fatto l’analisi dei residui i processi di calcolo di cui al punto 1 che rimandano alla popolazione (ottenuti come outputs di programmi al computer o altro) devono essere lasciati in sospeso! A meno che, come avviene di fatto in generale, decidiamo di procedere, senza porci problemi, a ‘testare’ le nostre ipotesi sul comportamento della popolazione, tenendo presente che le nostre conclusioni saranno affidabili o meno secondo ciò che ricaviamo dall’analisi dei residui. Infatti Anscombe nel 1973 dimostrò con i suoi campioni fittizi che due serie di dati diversi, sottoposti a regressione lineare anche se danno stessi risultati (dai coefficienti della retta alle loro inferenze sulla popolazione tramite la statistica t, all’ R-quadro e sua l’inferenza tramite la statistica F e tutte le altre conclusioni inferenziali) e non essere un modello adeguato se non sono rispettate le assunzioni sui residui standardizzati N(0, sigma^2) compresa l’indipendenza.

3- Terza linea di ricerca.    Comunque sia, se dopo l’analisi dei residui accettiamo il modello, siamo in grado, come vedremo, di fare  inferenze verso la popolazione circa tutti i parametri teorici del modello oppure accettare quelle già fatte

PRIMA LINEA DI RICERCA NELLA REGRESSIONE LINEARE SEMPLICE. Un possibile racconto.

Iniziamo misurando o utilizzando N coppie di dati (xi,yi) relativi a due variabili sperimentali, che nel piano cartesiano x,y ipotizziamo statisticamente distribuiti come una retta (ipotesi suggerita dal grafico cartesiano o da altro) per cui sia applicabile il seguente modello matematico:

Yi* = β0 + β1 * xi + εi ;   (xi,Yi*) sono le coordinate di n  punti sulla retta nella popolazione, mentre (xi,yi) sono le n coppie dei punti sperimentali.

dove xi è l’ascissa di ogni punto sperimentale e yr è l’ordinata corrispondente sulla retta di regressione, mentre xi,yi corrispondono ai punti sperimentali; εi, sconosciuti, rappresentano quanto Yi* differisce da Yi nella popolazione. Se conoscessi gli  εi troverei i coefficienti β0  β1 teorici.

Se non conosciamo gli εi, riscriviamo il modello sostituendo i corrispondenti valori stimati a e b ( o b0 e b1) che riassumono gli εi

yi = a + b * xi:   si tratta di scrivere n equazioni sostituendo le coppie di  valori conosciuti a xi e yi. Trovati a e b, ricaverò yr, “ordinate fittate”, (yr=a+bxi) ; allora yr*-Yr =εi che è la quantità residua dell’iesima osservazione; mentre resi=yr-yi -> residui. Notare la differenza fra yi e yr .

dove xi,yi sono ancora le coppie di dati sperimentali, yr sono  i valori sulla retta di regressione che ricaverò con i minimi quadrati e i valori beta0 (β0) e beta1 (β1) invece devono essere stimati e calcolati dalle coppie (xi,yi) conosciute e indicati con a e b1 o  b0 e b1, che rappresentano le nostre incognite. Per stimare beta0 e beta1, cioè calcolare le loro stime (a e b o b0 e b1)) dato che non conosciamo gli εi, è necessario individuare in qualche modo una particolare retta tracciata attraverso i punti (xi,yi) segnati nel piano cartesiano. Ma in quanti modi possiamo tracciare questa retta? In infiniti modi! E’ necessario quindi formulare un’ipotesi per individuarla. Ecco l’ipotesi: la somma delle ‘distanze’ elevate al quadrato, misurate lungo l’asse y, fra ogni punto sperimentale (tanti quanto imax) ed il corrispondente sulla retta sia un minimo (metodo dei minimi quadrati). Tali distanze sono appunto i residui (resi) che corrispondono alle stime degli εi. Dobbiamo cioè minimizzare l’espressione seguente: (vedremo poi come):

Σ(yr-yi)^2 = Σ((a + b * xi)-yi)^2 o anche  Σ(resi)^2 -> minimo

Le ipotesi iniziali su εi sono Σεi=0, cioè media(εi)=0, distribuzione gaussiana con varianza di εi=σ^2 costante e gli εi, uniformemente distribuiti (senza correlazioni interne). Se avessimo ottenuto una retta di regressione esatta, gli errori  εi ed i residui sarebbero la stessa cosa; così ci aspettiamo che i residui ci dicano qualcosa  sul valore di σ.

Potevamo anche scegliere altre ipotesi alternative, come per es., considerare la distanza a novanta gradi sempre al quadrato ecc.. Questo metodo consiste quindi nel trovare le stime di beta0 e beta1, cioè a e b, che forniscano come somma delle loro differenze elevate al quadrato un valore più piccolo possibile, cioè Σi (resi ^2)=un minimo. (da rivedere). Facendo i conti con algebra diretta e con programmi (vedere nel proseguio) otteniamo le due equazioni seguenti per il calcolo di queste stime b0 e b1 (o  a=b0; b=b1):

b1 = Σi ((xi-xm)*(yi-ym))/Σi (xi-xm)^2  se x =xi-xm e y=yi-ym  si può scrivere anche come:
b1=ΣΣ xy / ΣΣ x^2       bi è anche uguale a b1=(nΣxy-ΣxΣy)/(nΣx^2-(Σx)^2)    dove. x=xi-xm); y=yi-ym; Σx^2=Sxq=Σ(xi-xm)^2; (Σx)^2=qSx=(Σ(xi-xm))^2
ym = b0 + b1 * xm

Inseriti in qualche programma (vedere dopo) i vettori y e x (per es., i valori della matrice y (dimensioni:60*1) e x (dim.:60*2) nel programma in qbasic allegato (MULTIREG), si ottengono direttamente b0 e b1.

Ora b0 e b1 sono di certo le migliori stime per le corrispondenti grandezze nella popolazione, anche se difficilmente i numeri saranno gli stessi.

R-QUADRO O COEFFICIENTE DI DETERMINAZIONE

Esiste una misura che che indica la bontà di adattamento del modello ai dati sperimentali del campione (xi,yi) che è il Coefficiente di Determinazione indicato con R-quadro, che corrisponde poi al quadrato del Coefficiente di Correlazione lineare di Pearson fra i valori della variabile dipendente yi e la variabile indipendente xi,  o fra le yi dei dati e il corrispondente valore sulla retta di regressione yr la cui formula è:

R=Σ(x-xm)(y.ym)/(N-1)SxSy dove Sx ed Sy sono le deviazioni standard delle variabili x e y e n è la numerosità del campione.

R-quadro, come abbiamo già detto, potrebbe essere interpretato anche come il quadrato del coefficiente di correlazione  fra yi e yr, valore predetto di y dalla regressione  (questa definizione è applicabile direttamente al calcolo di esso nella multiregressione lineare)

Per approfondire il significato di R-quadro calcoliamo quale proporzione della variabilità totale della y può essere ‘spiegata’ dalla x (cioè da modello). La variabilità totale della variabile dipendente (y), cioè yi – ym può essere divisa in due componenti: variabilità spiegata dalla regressione (yri- ym) e non spiegata yi-yri=resi=ei.

yi – ym = (yri- ym) + yi-yri

Elevando a quadrato i due membri (sopprimendo il doppio prodotto che è zero) e applicando l’operatore sommatoria , avremo:

Σ(yi – ym)^2 = Σ(yi-yri)^2 + Σ(yri- ym)^2 

che si legge: la somma totale dei quadrati (TOTAL SUM OF SQUARE = TSS) è uguale alla somma dei quadrati residuali (RESIDUAL SUM OF SQUARE = RESS) più la somma dei quadrati di regressione (REGRESSION SUM OF SQUARE = REGSS). Dividendo le sommatorie a destra per i rispettivi gradi di libertà (n-p-1 e p, dove p è il numero delle variabili indipendenti, 1 nel nostro caso) si ottengono la MEAN SQUARE RESIDUAL (MSRES) e la MEAN SQUARE REGRESSION (MSREG), la cui somma è la TOTAL MEAN SQUARE (TMS)

Per calcolare quale proporzione della variabilità totale è spiegata dalla regressione, basta dividere la somma dei quadrati di regressione per la somma dei quadrati totale.

Variazione relativa spiegata = Σ(yri-ym)^2 / Σ(yi-ym)^2

Ci accorgiamo che questo rapporto è uguale a R-quadro (dimostrare). Un R-quadro, per es., di 0.44 significherà che la retta di regressione spiega il 44% della variabilità di y. Se tutte le osservazioni cadono sulla linea di regressione R-quadro è 1. Se non vi è nessuna relazione lineare fra x e y, R-quadro è zero.

 Dividendo  REGSS e RESS per i rispettivi gradi di libertà (p e n-p-1, dove p è il numero delle variabili indipendenti) si ottengono la MEAN SQUARE RESIDUAL (MSRES) e la MEAN SQUARE REGRESSION (MSREG), la cui somma è la TOTAL MEAN SQUARE (TMS).

Se le assunzioni sono rispettate e sotto le condizioni che R-quadro pop.=0 (assenza di relazione lineare nella popolazione), il rapporto fra MSREG/MSRES è distribuito come la F di Fischer con p e n-p-1 gl. Se tale rapporto è elevato (variazione spiegata > variazione residuale), riportato sulla distribuzione di Fisher, cade nella zona proibita, l’ipotesi che r-quadro pop.=0 deve essere respinta.

COME SI FA A VEDERE SE QUESTO MODELLO LINEARE E’ ACCETTABILE CON R. ANALISI DEI RESIDUI. Uso dei comandi di R.

Seguiamo il processo di costruzione del programma in R. Dobbiamo avere i dati cioè il vettore x=c(x1,x2…xn) e il corrispondente y=c(y1,y2…yn). Facciamo il plot dei dati con
plot(x,y). Da notare che y nell’esempio è chiamato yt.
Cerchiamo con R i risultati della regressione, resultreg, usando i comandi lm(y~x) o simple.lm(x,y) (per quest’ultima caricare il package UsingR)
resultreg=lm(y~x) # o
resultreg=simple.lm(x,t) # usando UsingR
Aggiungiamo al plot la retta di regressione per precisare l’idea sull’ipotesi iniziale (scelta di una regressione lineare semplice), con
abline(lm(y~x))
Nell’oggetto ‘resultreg’ ci sono contenute tutte le informazioni della regressione, in forma matriciale: oltre alle indicazioni dei coefficienti, nella prima colonna si trovano le loro stime, nella seconda i relativi errori standard (SEb0, per l’intercetta e SEb1, per la pendenza, nella quarta i valori della statistica t di Student calcolabile dal campione (b0/SEb0, b1/SEb1) che ci permette di affermare se sono accettabili o meno le stime e nella quinta le probabilità che indicano dove cade ogni stima nella distribuzione di Student. Questi valori possono essere richiamati con coef(summary(resultreg))[1,1] per b1; [2,2] per SE_pensenza ecc. Al di sotto di questa matrice a 2 righe e 4 colonne appaiono il Residual Standard Error (RSE), l’R-quadro e la F di Fisher, richiamabili con il comando cefficients$r-quadro ecc. La grandezza R-quadro (coefficiente di determinazione) e il residual standard error (SE o RSE) misurano l’adeguatezza ai dati (per es., se R^2=0.44, significa che la retta di regressione spiega il 44% della variabilità di yi). Solo dopo l’analisi dei residui valuteremo se tali stime sono accettabili.
summary(resultreg) #riassume quasi tutti i dettagli.
Per vedere parti di tali informazioni si usano i comandi res(resultreg); coef(resultreg); predict(resultreg)

b0=coef(summary(resultreg))[1,1]
b0
b1=coef(summary(resultreg))[2,1]
b1
SEb1=coef(summary(resultreg))[2,2]
SEb1
SEb0=coef(summary(resultreg))[1,2]
SEb0
summary(res) fornisce:  min. 1° Quantile, Mediana, Media, 3° Quantile, max, sui residui

Una volta conosciuto, interpretando le informazioni contenute in resultreg, che il modello è appropriato ai dati (fitta bene i dati), è necessario analizzare se sono rispettate le ipotesi iniziali sui residui  che rimandano alla  validità del modello. Successivamente vedremo come si comporteranno i parametri incogniti, stimati dai dati, nella popolazione da cui viene estratto il campione.

Nel prosieguo ricalcoleremo tutte queste grandezze usando comandi di più basso livello.

COME TESTARE I RESIDUI

Per vedere se vengono rispettate le assunzioni di linearità, cioè se davvero una linea retta ‘fitta’ bene i dati, e l’omogeneità della varianza (OMOSCEDASTICITA’), si possono plottare i residui  (y) contro i valori predetti dalla regressione (x). Se si presentano chiari patterns nei grafici detti, tali assunzioni possono essere violate. In un grafico fra valori predetti standardizzati (asse x) e residui standardizzati, i residui infatti dovrebbero essere distribuiti casualmente in una banda diffusa intorno ad una linea orizzontale, che passa per lo zero. Altre configurazioni di fasce dello stesso spessore  più o meno piegate prevedono assenza di lineatità. Se invece è lo sparpagliamento dei residui ad aumentare o diminuire con la variabile x o con i valori predetti, probabilmente l’assunzione di omoscedasticità non è rispettata. Altro modo efficace per testare l’omoscedasticità dei residui è quella di plottare i residui in funzione di ogni unità di tempo (per es., residui con i mesi, se si presentano patterns a imbuto, a clessidra, a farfalla… si prevede eteroscedasticità. Per controllare infine l’indipendenza dei residui si può osservare il correlogramma e somministrare il test di Durbin-Watson, contenuti insieme ad altro nel programma in Qbasic CORR (scritto da uno degli autori) allegato. Per testare la normalità dei residui possiamo usare svariati tests (chi-quadro, Kolmogorov e Smirnov..o il più recente Lim-Mudholkar (1980), inserito nel programma CORR.

ALTRO ANCORA  SUI RESIDUI CON R (da precisare):

1) Per la  normalità  si possono usare anche istogrammi, boxplot, plots normali;  Con Normal qqplot: i residui sono normali se il grafico rimane vicino alla linea.

2) La loro uniforme distribuzione spaziale (random, assenza di correlazione interna o trends), con plots dei residui VS tempo o ordinate;
3) costanza della loro varianza ad ogni xi, con plots dei residui VS tempo, ordinate yi e valori fittati;
con Residual VS fitted: si osserva la diffusione intorno alla retta y=0 e il trend.

Il comando plot farà molto di questo per noi se gli forniamo i risultati della regressione (resultreg):

plot(resultreg) #plotta  quattro grafici separati o su un solo piano cartesiano (se esplicitiamo il comando par(mfrow(2,2)).

SEGUE LA DESCRIZIONE DI QUESTI 4 GRAFICI ……GRAFICI RELATIVI ALL’ANALISI DEI RESIDUI IN R

Il comando plot(resultreg) plotta 4 grafici separati oppure sullo stesso piano cartesiano, se esplicitiamo il comando par(mfrow(2,2)).

– Per la normalità dei residui si possono usare anche istogrammi, boxplot e plots normali; con normal qqplot i residui saranno considerati normali se il grafico rimane vicino alla linea tratteggiata (vedere fig. Normal Q-Q). Osserviamo nella curva Normal Q-Q se i residui sono aggruppati e si allontanano dalla riga tratteggiata. Plottiamo le statistiche di ordine del campione ( standardized residuals) vs i quantili da una distribuzione normale norm(mean=0, sd=1) con il comando plot(resultreg, which=2). Possiamo testare la normalità anche con lo Shapiro-Will test:

shapiro.test(residuals(resultreg))

Se il p-value fornito è < di 0.05 significance level, si respinge l’ipotesi nulla H°, che i residui siano normalmente distribuiti. Da notare che il modello di regressione è robusto rispetto all’ipotesi di normalità. Sono più importanti le assunzioni di indipendenza e varianza costante.

– L’ipotesi di indipendenza dei residui è uno dei più importanti. La dipendenza si mostra nell’autocorrelazione che può essere positiva o negativa.  Si testa la loro uniforme distribuzione spaziale (random, assenza di correlazione interna o trends), con plots dei residui vs tempo o fitted values. Valori positivi dei residui sono seguiti da valori positivi e valori negativi da valori negativi. Si presenta così  un aspetto ciclico nei residui (Fig. Residuals vs fitted).

Si fornisce  anche un test statistico, il test di Durbin-Watson, la cui statistica D è calcolata anche dal programma in Qbasic CORR allegato, insieme alla tabella e spiegazione. Con R si fa un test a due lati con l’ipotesi nulla che la correlazione non sia zero. Se il p-value è superiore a, per es., 0.05 di livello di confidenza,  si respinge l’ipotesi che non sia zero la correlazione (c’è correlazione).

library(lmtest)

dwtest(resultreg, alternative=”two.sided”)

– La costanza della loro varianza ad ogni xi si usano grafici residui vs tempo, ordinate yi e valori fittati. Con Residuals vs fitted: si osservano la diffusione intorno alla retta y=0 e il trend (vedere fig. Residuals vs fitted). La Fig. Scale Location riporta sulle ordinate la radice quadrata dei residui standardizzati vs fitted value e controlla anch’esso se la la varianza è costante. In generale si dimostra che  la varianza dei residui cambia con i residui stessi, per cui conviene dividere ogni residuo per il suo errore standard (Residual Standard Error=radice della varianza = S*sqrt(1-hii)), ottenendo gli standardized residuals. Se resi sono tutti i residui, i residui standardizzati saranno: Rsi=resi/S*sqrt(1-hii) con i da 1 a n, dove hii, chiamata leverage, verrà definita più avanti. Se |Rsi! > 2 questo residuo rimanda ad un valore di y outlier. Cancelliamo da yt questo i-esimo e rifacciamo la regressione con gli n-1 dati, ottenendo un valore fittato Yr(i) senza il residuo Di=y(i)-Yri. Per cui: Var(Di) = S^2(i)/1-hii) e ti = Di/(S(i)/1-hii))

e i ti rappresentano i residui studentizzati cancellati. ti ha una distribuzione t con n-3 gl; riportiamo questi valori su tale distribuzione per decidere se si tratta di un outlier.
Ci aspettiamo una banda costante orizzontale con i fitted value, senza sventagliate in fuori o in dentro.

Tutto questo può essere fatto fare ad R (J. Kerns 2010, Cap.11)</i)

Forniamo tramite comandi di R infine un test statistico (il Breusch Pagan test) ancora per la costanza della varianza, senza entrare nel merito (per questo vedere “Introduction to Probability and Statistics Using R” di G.J. Kerns (prima ed.,pag. 270, prec. e seg.):

library(lmtest))

bptest(resultreg)

Si respingerà l’ipotesi nulla se BP ha un p-value che risulta superiore al livello di confidenza fissato (es., 0.05).

Fig. Residual vs Leverage – Coinvolge  Outliers, Leverage,  Distanza di Cook (da elaborare)

8-VARIE INFERENZE STATISTICHE CON R DOPO AVER ACCETTATO IL MODELLO CHE FITTA I DATI

Stime sulle grandezze della popolazione

Procediamo a fare le nostre inferenze a partire dal campione senza preoccuparci per ora delle assunzioni iniziali.

– Si possono così fare stime puntuali, se stimo il valore di un parametro della popolazione a partire dal campione, che possono essere considerate le migliori ipotesi singole immediate per una grandezza della popolazione

– si possono inferire valori degli errori standard dei coefficienti della retta, immaginando di estrarre moltissimi campioni dalla popolazione e calcolare per ognuno il parametro oggetto di inferenza; se le assunzioni sono rispettate, la distribuzione del parametro sarà gaussiana con media corrispondente al valore di quel parametro nella popolazione. Seguono le formule per il calcolo della stima dell’errore standard della pendenza b1 e della stima della varianza della popolazione, costante per ogni x:

SEb1=σβ1=σ/(sqrt((n-1)*Sx^2)) e  σ^2=S^2=Σ(yi-(b0+b1*x))^2/(n-2) Da notare che SEb1 stima σβ1

SEb1=S/sqrt((Σ((xi-xm)^2; Sx=standard deviation di x

S stima σ

la cui radice quadrata è l’errore standard della stima o deviazione standard dei residui.

– Spesso basandoci su grandezze del campione, è possibile calcolare un range di valori (centrato sul valore campionario), che, con una fissata probabilità include il valore della grandezza corrispondente nella popolazione. un tale range è detto INTERVALLO DI CONFIDENZA e la stima, stima per intervallo. E’ possibile calcolare un intervallo di confidenza per i valori della popolazione: per es., un intervallo di confidenza al 95% ancora per la pendenza β1:

b1 ± tscore*SEb1   dove ± tscore sono i due valori critici della t di Student, per n-2 gl e, per es.,significanza 0.05  o Intervallo di confidenza al 95%, (in generale se gl>30 la t di Student tende ad una gaussiana per cui tscore è circa 1.96). Così β1 sarà compreso fra b1-1.96*SEb1 e B1+1.96*SEb1 e β0 sarà compreso fra b0-1.96*SEb0 e b0+1.96*SEb0.

Con R: confint(resulreg, level=.95)

Un intervallo di confidenza al 95% significa che noi estraiamo campioni ripetuti da una popolazione, sotto le stesse condizioni,  e computiamo  per ognuno l’intervallo di confidenza al 95% per la pendenza di quel campione, il 95% di questi intervalli includerebbero il valore sconosciuto della pendenza della popolazione.  Naturalmente, poichè i valori veri della popolazione non sono conosciuti, non sapremo mai se quel particolare intervallo lo contenga. Da notare che se nell’intervallo di confidenza  per la pendenza non si trova lo zero, significherà che dovremo respingere l’ipotesi nulla che la pendenza sia zero a livello di significanza osservato dello 0.05 o meno.

– Si possono testare ipotesi che un parametro abbia un determinato valore nella popolazione: per es., β1=0 (β1 pendenza della popolazione) o R-quadro nella pop. = 0: nessuna relazione lineare. La stima dell’errore standard della pendenza b1, per esempio,  può servire per testare la seguente ipotesi: il valore della pendenza nella popolazione è zero (β1=0)? Può esserlo infatti nella popolazione e non nel campione. Se nella popolazione non esiste relazione lineare (β1=0), si conosce la distribuzione della statistica t=pendenza/errore standard della pendenza, calcolata su tutti i campioni estratti dalla popolazione: si tratta di una distribuzione di Student non n-2  gl. Se il valore del t del nostro campione (tc=b1/SEb1), inserito sulle ascisse di questa distribuzione campionaria dà livelli di significanza (lascia a destra un’area di probabilità inferiore ad una soglia prefissata (0.05,0.01…), allora l’ipotesi nulla (β1=0 nella popolazione) è da respingere e ci sarà effettivamente relazione lineare fra le due variabili nella popolazione. Tale prova però non ci fornisce informazioni relative a quanto la retta di regressione spieghi i dati effettivamente (lo fa, come si è visto in precedenza, R-quadro).

– Come si è visto la somma totale dei quadrati (total sum of squares=TSS) è uguale alla somma dei quadrati residuali (residual sum of squares=RESSS) più la somma dei quadrati di regressione (regression sum of squares=REGSS).

Sotto le condizioni che R-quadro pop.=0 (assenza di relazione lineare nella popolazione), il rapporto fra MSREG/MSRES è distribuito come la F di Fischer con p e n-p-1 gl. Se tale rapporto elevato (variazione spiegata > variazione residuale), riportato sulla distribuzione di Fisher, cade nella zona proibita, l’ipotesi che r-quadro pop.=0 deve essere respinta..

– Si possono così fare controlli incrociati: usando la statistica b1/SE, se non si può respingere l’ipotesi nulla: b1=0: ma allora l’intervallo di confidenza dovrà contenere lo zero; e la F di Fisher non sarà significativa, cioè R-quadro della popolazione=0 ecc..

Inferenza circa σ

Abbiamo due parametri a e b (o b0 e b1) ìricavati dai dati attraverso conti o programmi, tre parametri da stimare nel modello che sono σ,  β0 e β1;  σ, è la deviazione standard dei termini dell’errore; se avessimo una linea di regressione ‘esatta’ i termini dell’errore ed i residui coinciderebbbero. Invece quello che è vero è che σ deve essere stimato da:

S^2=Σ(yr – yi)^2/(n-2)=Σei^2/(n-2)

dove ei sono i residui. S^2 è uno stimatore unbiased di σ^2, cioè la sua distribuzione campionaria ha come media σ^2 della popolazione universo. E’ la divisione per n-2 che lo rende corretto. La radice positiva di S^2 è chiamata SEE standard error della stima o deviazione standard dei residui. Gi errori standard della pendenza e della intercetta sono stati calcolati da R nella seconda colonna dei risultati.

LO STANDARD ERROR DI b0

σb0=σ*sqrt(1/n + (xm^2/(n-1)*(S_x)^2)

dove (S_x)^2 è la varianza campionaria della variabile indipendente

delta2=(xi-mean(xi))^2
Sx2=sum((xi-mean(xi))^2)/(n-1) varianza campionaria  di  x
Se sostituisco Sx2 in (S_x)^2, ottengo:
SEb0=S*sqrt(1/n+(mean(xi))^2/Sx2)

LO STANDARD ERROR DI b1

σb1=σ/sqrt((n-1)*(Sx)^2)

PRECISIAMO ALCUNI PASSAGGI

Inferenza circa β1

R include il test per β1=0 che controlla l’ipotesi nulla (nessuna pendenza)

Lo stimatore b1 di β1,cioè la pendenza della linea di regressione nella popolazione, è pure uno stimatore unbiased (corretto, imparziale obbiettivo).

Lo standard error di b1 è:

SEb1=S/(SQRT(Σ(xi-xm)^2)  dove S è la radice dello stimatore precedente

PER TESTARE IPOTESI

La distribuzione del valore normalizzato di b1, cioè la sua distribuzione campionaria  è una statistica t::

Non vi è alcuna relazione lineare fra x e y quando la pendenza della linea di regressione è 0.

Il test usato è:

t=b1/Sb1   la sua distribuzione statistica quando le assunzioni sono rispettate e l’ipotesi non è una relazione lineare e la distribuzione di Studente con n-2 gl (degree of fredom)

Il test usato per testare l’ipotesi che l’intercetta è zero è:

t=b1/s(b0) ha la stessa distribuzione campionaria.

Queste statistiche t e i loro livelli di significanza a due code sono riportati nella matrice dei risultati R nelle ultime due colonne.

Se vogliamo testare se β1=certo valore si utilizzano le distribuzioni campionarie seguenti:

t=(b1- β1)/SEb1   che ha una distribuzione campionaria t di Student con n-2 gradi di libertà

t=(b0-β0)/SEb0

dove SEb0=S*(sqrt(sum(xi^2/n*sum(xi-xm)^2

A questo punto è facile fare un test di ipotesi per la pendenza della regressione lineare. Per es., se l’ipotesi nulla è H0: β1=w contro l’ipotesi alternativa Ha: β1≠w; allora si può calcolare la statistica campionaria t=(b1-w)/SEb1 e trovare il valore di probabilità corrispondente dalla distribuzione-t.

Si voglia fare un test per vedere se la pendenza di -1 che prevediamo è corretta. Procediamo con R nel test statistico.

>e=resid(resultreg) # i residui del modello resultreg

>b1=(coef(resultreg))[[‘x’]] #la parte x dei coefficienti

>S=sqrt(sum(e^2/(n-2))

>SEb1=S/sum((x-mean(xi))^2 dove x è il vettore dei valori

>t=(b1-(-1))/SEb1  # cioè +1: valore della statistica campionaria

>pt(t,gl,lower.tail=F) #trova la coda a destra per questo valore di t con n-2 gl

Il valore ottenuto raddoppia se il problema richiede due lati. Se la probabilità è inf., es. 0.005 ad un dato valore si respinge l’ipotesi che la pendenza =-1.

Nel comando summary R fa da solo il test per l’ipotesi β1=0 nella colonna (pr(>|t!)) alla posizione 2,4.

Inferenza circa β0= w in R 

SE(bo)=S*sqrt(sum(x^2)/n*sum(x.mean(x))^2)))

t=(bo-w)/SEb0 # coef(resultreg)[[‘(intercept)’]]

pt(t,13,lower.tail=TRUE) # la coda inferiore <w

COME SI COSTRUISCONO LE BANDE DI CONFIDENZA

Le bande di confidenza sono strisce lungo la retta di regressione che hanno un buon effetto visivo.  La retta di regressione è usata per predire, per ogni x, il valore di yo il valore medio di y. Quanto è accurata questa previsione? prevedere per ogni x un y o la media di y porta a due bande diverse. Il valore medio di y è soggetto ad una variabilità minore della previsione del singolo y. Ambedue gli intervalli sono del tipo

b0+b1*xi ± t* SEprevisione

L’errore standard per la previsione del valore medio di y per un dato xi è:

SEprevym=S*sqrt(1/n + (xi-xmi)^2/(sum(xi-xim)^2)) dove S è la deviazione standard campionaria dei residui ei (RSE).

Se stiamo invece tentando di predire un singolo valore yt allora SEprevyt cambia anche se solo leggermente e in funzione della numerosità:

SEprevyt = S*sqrt(1 + 1/n + (xi-xmi)^2/(sum(xi-xmi)^2))

Basta costruire una tabella a tre colonne per ciascuna previsione (prevym, prevyt). Per es., per prevym: yt, SEprevymlow, SEprevytup. Nella prima colonna ci vanno gli n valori previsti yt, nella seconda gli n valori yt-SEprevym e nella terza i 60 valori yt+SEprevym. se stampiamo, sullo stesso piano cartesiano, xi,yi queste tre curve otteniamo la banda di confidenza per la previsione della media e così per l’altro caso.

Anche la funzione predict aiuta a plottare le bande.

La funzione simple.lm del Package UsingR di Venable plotterà ambedue le bande di confidenza,  chiedendolo tramite il comando show.ci=T:

simple.lim(xi,yt, show.ci=T, conf.level=0.90)

USO DI PREDICT PER PLOTTARE LE BANDE DI CONFIDENZA

Per ottenere i valori predetti, si può usare in R la funzione predict che va chiamata attraverso un data.frame con dati x sulla colonna.

predict(resultreg, data.frame(x=c(50,60))) fornisce l’yt per queste due ascisse.

Per ogni x ordinato (x=sort(x)) però vogliamo 3 valori corrispondenti all’intevallo di confidenza:

predict(resultreg,data.frame(c=sort(x)) + level=0.9, interval=”confidence”)  questo fa una tabella con tre colonne FIT  LWR  UPR: per plottare la banda inferiore usiamo la seconda colonna a cui si accede con [0,2] e con points.

plot(xi,yt)

abline(resultreg)

ci.lwr=predict(resulreg, data.frame(x=sort(x)), level=0.9, interval=”confidence”)[2]

Si aggiunge la banda con points

points(sort(xi), ci.lwr, typt=l”) # o si usa line()

Aternativamente, possiamo plottare l’altra con la funzione curve come segue:

curve(predict(resultreg, data.frame(x=x), interval=”confidence”)[,3], add=T)

Attenzione però perchè la funzione curve vuole una funzione di x non i dati! E’ difficile da interrompere.

Riassumendo proviamo queste linee in R:

Summary(resultreg)
predict(resultreg, data,frame(xi=sort(xi)), level=0.9, interval=”Confidence”)
c1.lwr= predict(resultreg, data.frame(xi=sort(xi)),level=0.9,intervall=”Confidence”)[,2]
points(sort(xi), ci.lwr, type=”l”),
ci.upr=predict(resultreg, data.frame(x=x), level=9.9, interval=”Confidence”, add=T)[,3]
points(sort(xi),ci.upr, type=”l”)

SCRIPTS DEL PROGRAMMA IN R RELATIVO ALLA REGRESSIONE LINEARE SEMPLICE: da confrontare gli outputs di R e quelli del Mathematica di Wolfram (programma scritto da P. Pistoia)!

library(graphics)
library(tseries)
library(UsingR)
library(lattice)
par(ask=T)

#Il seguente vettore dati è ottenuto togliendo dai 60 dati del
#vettore dati iniziale l’ESAs (effetto stagionale arsenico), ottenendo yt con #trend + random + ciclo

yt=c(0.0308,0.0460,0.0508,0.0643,0.0549,0.0604,0.0423,
0.0306,0.0502,0.0643, 0.0667,0.0555,0.0508,0.0430,
0.0658,0.0583,0.0750,0.0574,0.0693,0.0706,0.0602,
0.0443,0.0537,0.0605,0.0534,0.0610,0.0608,0.0683,
0.0580,0.0654,0.0708,0.0896,
0.0832,0.0713,0.0727,0.0815,0.0778,0.0795,0.0728,
0.0748,0.0590,0.0904,0.0723,0.0676, 0.0672,0.0823,
0.0707,0.0675,0.0838,0.0830,0.0728,
0.0723,0.0820,0.0614,0.0763,
0.0736,0.0742,0.0733,0.0637,0.0705)
par(ask=T)
options(digits=16)

ym=mean(yt)
ym

# LA REGRESSIONE con il calcolo di b0 e b1

xi=c(1:60)

n=length(xi)
n

plot(xi,yt, type=”l”)
abline(lm(yt~xi))

x=(xi-mean(xi))
y=(yt-mean(yt))

ai=x*y
Sxy=sum(ai)
Sx=sum(x)
Sy=sum(y)
xq=x^2
Sxq=sum(xq)
yq=y^2
qSx=Sx^2
b1=(n*Sxy+Sx*Sy)/(n*Sxq-qSx)

b0=sum(yt)/n-b1*sum(xi)/n
b1;b0

Yi=b0+b1*xi

resultreg=(lm(yt~xi)) # in resultreg ci vanno i risultati sulla yt originale
summary(resultreg) # trovo la maggior parte dei risultati

coef(summary(resultreg)) # trovo otto valori del risultato sotto forma di matrice
# 4 colonne: stima, SE, t-value, pr(>t)

b0=coef(summary(resultreg))[1,1]
b0
b1=coef(summary(resultreg))[2,1]
b1
SEb1=coef(summary(resultreg))[2,2]
SEb1
SEb0=coef(summary(resultreg))[1,2]
SEb0

#t0=b0/SEb0 # SEb0
#t1=b1/SEb1 # SEb1

n1=n-2
t=b1/SEb1
pt(t,n1,lower.tail=F)

#se l’ipotesi H0 è ß1=0.05 e Ha?0.05, calcoliamo a mano il p-value
ß1=0.05
t=(b1-ß1)/SEb1
pt(t,n1,lower.tail=F)

# Inferenza su b0
ß0=200

#SEb0=sqrt(Sq*sum(xi^2)/n*sum(xi-mean(xi))^2)
#standard error di b0

SEb0
t=b0/SEb0
t
pt(t,n1,lower.tail=F)

t=(b0-ß0)/SEb0 # se per ipotesi ß0=200:
t=(b0-ß0)/SEb0
pt(t,n1,lower.tail=T) # la coda più bassa (<200)

res=resid(resultreg)
summary(res)
plot(resultreg) #aspetta per confermare cambio pagina…
par(mfrow=c(2,2))
plot(resultreg)

Sq=sum(res^2)/(length(xi)-2) # stima di sigma^2

S=sqrt(Sq) #deviazione stardard dei residui
S

CONTI CHE TORNANO

# inferenze su b1
delta2=(xi-mean(xi))^2
Sx2=sum(delta2)
SEb1=S/sqrt(Sx2)
SEb1

SEb1=S/sqrt(sum((xi-mean(xi))^2))
SEb1

t=b1/SEb1 # statistica campionaria di b1
t

# Si trova il valore p rispetto alla distribuzione t, se ß1=0

n1=length(xi)-2
pt(t,n1,lower.tail=F)

#se l’ipotesi H0 è ß1=0.05 e Ha?0.05, calcoliamo a mano il p-value

ß1=0.05
t=(b1-ß1)/SEb1
pt(t,n1,lower.tail=F)

# Inferenza su b0
ß0=200

SEb0=S*sqrt(1/n+(mean(xi))^2/Sx2)
#standard error di b0

SEb0
t=b0/SEb0

t=b0/SEb0
t

t=(b0-ß0)/SEb0 # se per ipotesi ß0=200:
t=(b0-ß0)/SEb0
pt(t,n1,lower.tail=T) # la coda più bassa (<200)

#CALCOLO DI R-QUADRO E TEST  F DI FISCHER  per R-quadro_pop=0#

# Calcolo Total Sum of Square (TSS)#
TSS=sum((yt-mean(yt))^2)
TSS

# Calcolo Regression Sum of Square (REGSS)#
REGSS=sum((Yi-mean(yt))^2)
REGSS
# Calcolo Residual Sum of Square(RESSS)#
RESSS=sum(res^2)
RESSS

# La differenza TSS-(REGSS+RESSS) deve essere 0#
TSS-RESSS-REGSS

# Calcolo Mean Square Regression (MSREG)#
p=1
MSREG=REGSS/p
MSREG
# Calcolo Mean Square Residual (MSRES)#
MSRES=RESSS/(n-p-1)
MSRES
# Calcolo Total Mean Square (TMS)
TMS=TSS/(n-1)
TMS
# Calcolo l’R-quadro che è il coefficiente di correlazione
# fra xi e yt, oppure fra yr e yt, ovvero rappresenta
# la percentuale di variazione degli yt spiegata dalla
# regressione.
Rq=REGSS/TSS
Rq
# Calcolo l’R-quadro aggiustato per la popolazione
Rqagg=1-Sq/TMS
Rqagg
# Calcolo la statistica F di Fischer
F=MSREG/MSRES
F
# Calcolo la probabilità corrispondente alla # # ascissa F. Se tale probabilità è > di 0.975#
# (livello di significanza 0.025 a due code) #
# si respinge l’ipotesi nulla.#
pf(F,p,n-p-1,lower.tail=T)

# BANDE DI CONFIDENZA

par(mfrow=c(1,1))

yt=yt*100 # ricordiamoci di pensare divise per 100 le ordinate del grafico.
# poiche la pendenza non è risolvibile nel grafico, si fa dinuovo la regressione con yt*100

resultreg=(lm(yt~xi))
summary(resultreg)# da i risultati per i punti (xi,yt*100) confrontare con quelli (xi,yt)!
plot(xi,yt) #fa uno scatterplot dei dati e vi aggiunge la retta di regressione
abline(resultreg) #si costruisce la base per aggiungere le bande.

predict(resultreg, data.frame(xi=sort(xi)), level=0.9, interval=”confidence”)

ci.lwr= predict(resultreg, data.frame(xi=sort(xi)),level=0.9,interval=”confidence”)[,2]

points(sort(xi), ci.lwr, type=”l”)

ci.upr=predict(resultreg, data.frame(xi=xi), level=.9, interval=”confidence”, add=T)[,3]

points(sort(xi),ci.upr, type=”l”)

#Usiamo un comando di più alto livello del package UsingR di Venable

resultreg=simple.lm(xi,yt)
summary(resultreg)
simple.lm(xi,yt,show.ci=T,conf.level=0.95,pred=)

 

COME SI FA A VEDERE SE QUESTO MODELLO E’ ACCETTABILE CON IL MATHEMATICA DI WOLFRAN. Scripts di Piero Pistoia

Applichiamo il modello di regressione semplice, come esempio, su tre possibili vettori dati di serie storiche mutuati da una mia ricerca su dati reali relativi a 60 concentrazioni mensili (5 anni) di arsenico nelle acque potabili delle Sorgenti Onore della Carlina (montagna a cavallo di tre provincie, Siena, Firenze, Pisa)  che integra l’acquedotto dell’Alta val di Cecina (Pi). Nei remarks iniziali è riportata in breve come sono stati costruiti questi vettori all’interno della ricerca stessa, accennando anche ai processi  serviti per il loro calcolo. I vettori verranno inseriti uno alla volta eliminando le virgolette agli estremi; vengono allegati alcuni grafici costruiti dal programma. La ricerca verrà a suo tempo inserita nel blog, come esempio di analisi statistica su dati reali. Con qualche variazione sui valori dell’asse x è possibile inserire coppie di vettori x,y qualsiasi rendendo questo uno strumento efficace per testare ogni retta in ogni piano cartesiano.  Brevi remarks sono stati abbinati anche agli svariati tests statistici condotti. Le diverse linee di programma dovranno essere riscritte sulla console del Mathematica (vers.4.x o anche la  vers. 2.x ), con molta attenzione. Buon divertimento per quelli che lo vorranno fare.

SCRIPTS DI P. PISTOIA RELATIVO ALLA REGRESSIONE SEMPLICE CON IL LINGUAGGIO DEL MATHEMATICA DI WOLFRAM

“Si hanno dati mensili, per 5 anni (60 dati), di concentrazioni As delle
sorgenti Onore della Carlina, che servono l’Alta val di Cecina; così avremo 5
concentrazioni per i 5 gennaio, 5 concentrazioni per i 5 frebbraio e così
via. Si mediano poi per ogni mese questi 5 valori per ottenere le 12 medie
seguenti a partire da gennaio.
E’ interessante notare come abbiamo ottenuto un’oscillazione in 12 mesi fattori stagionali, che potremmo estendere ai 5 anni con il comando rep, ottenendo l’effetto stagionale (ancora 60 dati) che toglieremo dai dati originali yt, al fine di avere yt1 (ciclo+trend+random). Per vedere ‘cosa c’è dentro’ gli si
applica il periodogramma.”

“yt={0.307,0.301,0.324,0.312,0.363,0.348,0.385,0.359,0.314,0.294,0.309,0.299}”
“yt=yt/5”

“I 48 dati seguenti sono stati ottenuti da 60 dati mensile, sempre dell’As,

togliendo da essi il vettore dati ottenuto da una media mobile di ordine 12 eseguita sugli stessi. In tal modo si viene a togliere dai dati originali l’oscillazione di ordine dodici (vettore asf12), scoperta con un periodogramma applicato ad essi. Allora questi 48 dati, dopo la sottrazione di asf12, conterranno ancora trend e ciclo (datitc), se l’operazoione di media avrà
eliminato i random. Su essi potremo appliare un processo che porta all’individuazione di una retta di regressione”

“>yt={0.0483,0.0527,0.0533,0.0537,0.0543,0.0550,
0.0560,0.0588,0.0609,0.0605,0.0591,0.0588,0.0591,0.0598,0.0603,0.0605,0.0602,0.0598,
0.0602,0.0611,0.0628,0.0649,0.0668,0.0685,0.0704,0.0721,0.0734,
0.0742,0.0745,0.0756,0.0767,0.0758,0.0743,0.0740,0.0744,0.0738,0.0734,0.0738,
0.0740,0.0739,0.0747,0.0745,0.0734,0.0738,0.0744,0.0743,0.0736,0.0735}”

“Il vettore asf12 (48 dati) viene utilizzato per l’elaborazione dei 12 fattori stagionali, detti AsFS, (prendendo tutti i valori di gennaio diviso 4 (media dei 4 gennaio), tutti valori di febbraio diviso 4 (media dei 4 febbraio) fino al dodicesimo fattore per dicembre. Si costruisce poi il vettore effetto stagionale (AsES) di 60 dati allineando a partire dal gennaio iniziale, questi dodici fattori stagionali ripetuti 5 volte, coprendo 60 dati. I 60 dati seguenti si ricavano sottraendo dal vettore yt (60 dati) iniziale il vettore di 60 dati dell’effetto stagionale; in tal modo si libera da yt l’effetto stagionale (AsES).In y1t che rimane ci dovrebbero essere ciclo, trend e random, Su di esso  proveremo una regressione lineare semplice”

yt={0.0308,0.0460,0.0508,0.0643,0.0549,0.0604,0.0423,0.0306,0.0502,0.0643, 0.0667,0.0555,0.0508,0.0430,0.0658,0.0583,0.0750,0.0574,0.0693,0.0706,0.0602,
0.0443,0.0537,0.0605,0.0534,0.0610,0.0608,0.0683,0.0580,0.0654,0.0708,0.0896,
0.0832,0.0713,0.0727,0.0815,0.0778,0.0795,0.0728,0.0748,0.0590,0.0904,0.0723,0.067, 0.0672,0.0823,0.0707,0.0675,0.0838,0.0830,0.0728,0.0723,0.0820,0.0614,0.0763,
0.0736,0.0742,0.0733,0.0637,0.0705}

p1 = ListPlot[yt, PlotJoined -> True,
PlotRange -> Automatic, GridLines -> {Automatic, Automatic}]

x9 = N[Table[i, {i, 1, Length[yt]}]];
c1 = x9;
For [i = 1, i < Length[yt] + 1, i++, j = i*2; c = c1; yi = yt[[i]];
c = Insert[c, yi, j]; c1 = c];
d = Partition[c, 2]
c

f[x_] := Fit[d, {1, x}, x]

z1 = Transpose[d][[1]];
z2 = Transpose[d][[2]];
yi = z2;
x1 = Min[z1];
x2 = Max[z1];
n = Length[z1]
B0 = f[x] /. x -> 0
f[0]
f1 = f[x] /. x -> 1
f[1]
B1 = f1 – B0
m[list_List] := Apply[Plus, list]/n
xv[list_List] := m[(list – xmedia)^2]
xmedia = m[z1]
ymedia = m[z2]
xvar = xv[z1]

<< Statistics`DescriptiveStatistics`
<< Statistics`ContinuousDistributions`
<< Graphics`Legend`

xmedia = Mean[z1]
xvar = Variance[z1]
yvar = Variance[z2]
yr = f[x] /. x -> z1;
RES = yi – yr;

sd = RES^2;

“Calcolo Total Sum of Square (TSS)”
TSS = Apply[Plus, (yi – ymedia)^2]

“———————————–”

“Calcolo Regression Sum of Square (REGSS)”
REGSS = Apply[Plus, (yr – ymedia)^2]

“———————————–”

“Calcolo Residual Sum Of Square (RESSS)”
RESSS = Apply[Plus, sd]

“———————————–”

“Calcolo Mean Square Regression (MSREG)”
p = 1
MSREG = REGSS/p

“———————————–”

“Calcolo Mean Square Residual (MSRES)”
MSRES = RESSS/(n – p – 1)

“———————————–”

“Calcolo Total Mean Square (TMS)”
TMS = TSS/(n – 1)

“———————————–”

“Calcolo R-quadro che è il coefficiente di”
“correlazione fra x e y, oppure fra yi e yr,”
“ovvero rappresenta la percentuale di”
“variazione degli yi spiegata dalla”
“regressione”
Rq = REGSS/TSS

“———————————–”

“Calcolo l’R quadro aggiustato per stimare il”
“corrispondente parametro della popolazione”
ESS1 = Apply[Plus, sd];
ESS2 = ESS1/(n – 2);
TSS2 = TSS/(n – 1);
Rqagg = 1 – ESS2/TSS2

“———————————-”

“Calcolo la Statistica F (MSREG/MSRES)”
” che ha la distribuzione di Fisher”
F = MSREG/MSRES

“———————————–”

“Calcolo i livelli di significanza al 95%”
“(2 code) della F di Fisher. Se la F è >”
“(coda a destra) di F95% siamo autorizzati”
“a respingere l’ipotesi nulla (Rq=0 nella”
“popolazione”
ndist = FRatioDistribution[p, n – p – 1]
F95 = Quantile[ndist, (0.95 + 1)/2] // N

“———————————–”

“Calcolo anche la probabilità (Area)”

“corrispondente all’ascissa F. Se risulta”
” > di 0.975 cade nella zona proibita”
CDF[ndist, F] // N

“———————————–”

“Calcolo l’Errore Standard della Stima o”
“Deviazione Standard dei Residui. Si tratta della”
“stima della Deviazione Standard delle distribuzioni”
“della variabile dipendente per ogni xi”
ESS = Sqrt[ESS1/(n – 2)] // N

“———————————–”

“Calcolo t-critico all’inizio della coda corrispondente”
“ad un’area di 0.975 in una distribuzione di Student a”
“n-1 gradi i libertà e ad n-2”
ndist1 = StudentTDistribution[n – 1]
ndist2 = StudentTDistribution[n – 2]
t1 = Quantile[ndist1, {0.95 + 1}/2] // N
t2 = Quantile[ndist2, {0.95 + 1}/2] // N

“———————————–”

“Calcolo l’Errore Standard di B0 (SB0) e di B1 (SB1).”
” Ricavo poi il valore campionario di tB0 (B0/SB0)”
” e tB1 (B1/SB1), per controllare se B0 e B1 nella”
” popolazione hanno valore zero”
SB0 = ESS Sqrt[1/n + xmedia^2/((n – 1) xvar)]
SB1 = ESS/Sqrt[(n – 1) xvar]
tB0 = B0/SB0
tB1 = B1/SB1

“———————————–”

“Calcolo A: area (probabilità) lasciata a sinistra”
” dell’ascissa tB0 nella sua distribuzione, una ”
“Student a n-2 GL. P=1-A è la probabilità lasciata”
” a destra di tB0 (Livello di Significanza); se ”
“questa è < di 0.025 si respinge l’ipotesi nulla”
” (B0 e/o B1 nulli nella popolazione) ”
A = CDF[ndist2, tB0]
P = 1 – A

“———————————–”

“Faccio un calcolo analogo per B1”
A1 = CDF[ndist2, tB1]
P1 = 1 – A1

“———————————–”

“Calcolo ora gli Intervalli di Confidenza al 95% di”
” B0 e B1, nei quali con la probabilità del 95% ”
“cadranno i rispettivi valori della popolazione”
B0 + t2 SB0
B0 – t2 SB0

B1 + t2 SB1
B1 – t2 SB1

“———————————–”

“Calcolo l’Errore Standard della Stima funzione”
“di (x-xmedia) nel caso di pochi dati”
k[x_] := t1 ESS Sqrt[((n + 1)/n + (x – xmedia)^2/((n – 1) xvar))]

“———————————–”

ymin = Floor[f[Floor[x1]] – k[Floor[x1]]]
ymax = Ceiling[f[Ceiling[x2]] + k[Ceiling[x2]]]

Plot[{f[x], f[x] + k[x], f[x] – k[x]},
{x, Floor[x1], Ceiling[x2]},
PlotStyle ->

{{AbsoluteThickness[0.001]},
{AbsoluteThickness[0.001], AbsoluteDashing[{5, 5}]},
{AbsoluteThickness[0.001], AbsoluteDashing[{5, 5}]}},
PlotLabel -> FontForm[Rqagg “->Rq-Aggiustato”, {“Times”, 12}],
PlotLegend -> {“Curva  Regressione”, “Limite Interv Conf 95 %”,
“Limite Interv Conf 95 %”},
LegendPosition -> {0.8, 0},
AxesOrigin -> {Automatic, Automatic},
AxesLabel -> {“Igrometro di prova”, “Igrom. di riferimento”},
GridLines -> {Automatic, Automatic},

Evaluate[Epilog -> {PointSize[0.01], Map[Point, d]}]]

matstat0001

“ANALISI DEI RESIDUI”

“Con i residui è possibile controllare se le assunzioni”
“di linearità, normalità e varianza costante, richieste”
“per l’analisi della regressione lineare, sono o no soddisfatte.”
“Basta costruire il grafico dei Residui Standardizzati sulle”
” ordinate e la variabile indipendente standardizzata sulle”
” ascisse e/o quello dei Residui Studentizzati con ancora”
“la variabile indipendente standardizzata sulle ascisse”

VIS = (z1 – xmedia)/Sqrt[xvar];

RESSTA = RES/ESS;

k1 = Flatten[k[x] /. x -> z1];

n0 = Length[k1];

RESSTU = RES/k1;

n1 = Length[VIS];

n2 = Length[RESSTA];

n3 = Length[RESSTU];

c1 = VIS;

c = VIS;

w = n + 1

For[i = 1, i < w, i++,

j = i*2; c = VIS; yi = RESSTA[[i]];

c = Insert[c, yi, j]; VIS = c]

d1 = Partition[c, 2];

Length[d1];

ListPlot[d1]

For[i = 1, i < w, i++,

j = i*2; c = c1; yi = RESSTU[[i]];

c = Insert[c, yi, j]; c1 = c]

d2 = Partition[c, 2];

Length[d2];

ListPlot[d2]

matstat0003

ALGEBRA MATRICIALE PER REGRESSIONI ANCHE MULTILINEARI E MATRICE INVERSA; CON ESEMPI DI CALCOLO (dal blog cercare “Un parziale percorso di base…, dello stesso autore)

COME ‘FITTARE’ UNA COMBINAZIONE DI ONDE DEL SENO AI DATI DI UNA SERIE STORICA (dal blog cercare “Un parziale percorso di base…”)

SCRIPTS del PERIODOGRAMMA  prima parte

#In ogni caso gli scripts dei programmi presentati in R possono essere trasferiti #direttamente sulla console di R con Copia-Incolla: il programma inizierà #nell’immediato a girare costruendo risultati e grafici i cui significati sono riassunti #nei remarks.

# INIZIO ANALISI DI FOURIER IN FORMA DI FUNCTION (a cura di P. Pistoia).

t=c(1:21)

yt=100+4*sin(2*t/21*2*pi-pi/2)+3*sin(4*t/21*2*pi+0)+
6*sin(5*t/21*2*pi-1.745)

m =(n-1)/2 # perchè n dispari

PRDGRAM<- function(yt,m) {

#alfa=-pi/2 -> 270°;  alfa=-1.175 rad (cioè -100°) -> 260°

n=length(yt)
t=c(1:n)

yt=as.vector(yt)

#m =(n/2-1) # perchè n pari

#m= numero amoniche da cercare nei dati

# libray(tseries)

# VALORI DEL PARAMETRO ak
a0=c(); k=0; a0=0;
for(t in 1:n){a0=a0+yt[t]*cos(2*pi*t*k/n)}
a0

a0=a0*2/n;a0=a0/2

a0

a=c();a[1:m]=0;
for(k in 1:m) {
for(t in 1:n){
a[k]=a[k]+yt[t]*cos(2*pi*t*k/n)}}
a=2*a/n

# vALORI DEL PARAMETRO bk

b=c();b[1:m]=0;b0=0;k=0
for(k in 1:m) {
for(t in 1:n){
b[k]=b[k]+yt[t]*sin(2*pi*t*k/n)}}

a <- as.vector(a)

for(i in 1:m){
if (abs(a[i]) < 1e-10) a[i]=0 else a[i]=a[i]}
a

for(i in 1:m){
if (abs(b[i]) < 1e-10) b[i]=0 else b[i]=b[i]}
b=2*b/n
b
# aMPIEZZE

ro <- sqrt(a^2 +b^2)
ro

for(i in 1:m){
if (abs(ro[i]) < 1e-10) ro[i]=0 else ro[i]=ro[i]}
ro
# CALCOLO DELLA FASE DI OGNI ARMONICA
# RIPORTANDO IL VALORE AL QUADRANTE GIUSTO
for(i in 1:m){
f2[i] <- abs(a[i]/b[i])
f2[i] <- atan(f2[i])*180/pi}
f2 =as.vector(f2)
f2

phi <- c()
for(i in 1:m){
# f2 <- abs(a[i]/b[i]);
# f2 <- atan(f2)*180/pi;
if(b[i]>0 & a[i]>0) phi[i] = f2[i];
if(b[i]<0 & a[i]>0) phi[i] = 180-f2[i];
if(b[i]<0 & a[i]<0) phi[i] = 180+f2[i];
if(b[i]>0 & a[i]<0) phi[i] = 360-f2[i];
if(b[i]==0 & a[i]==0) phi[i] = 0;
if((b[i]<0 & a[i]>0) | a[i]==0) phi[i]=0;
if(b[i]==0 & a[i]>0) phi[i]=90;
if(b[i]==0 & a[i]<0) phi[i]=360-90
}
# PHI FASE ARMONICHE

phi=as.vector(phi)
phi
param_a <-a
param_b <-b
ampiezza <- ro
fase <- phi
data <-data.frame(param_a,param_b,ampiezza, fase)
data

par(mfrow=c(1,4))

plot(a, xlab=”Armoniche = N° osclllazioni in 21 dati”)
plot(b, xlab=”Armoniche = N° osclllazioni in 21 dati”)

r0=as.vector(ro)
plot(ro,type=”l”,main=”PERIODOGRAMMA di dati”,
xlab=”Armoniche = N° osclllazioni in 21 dati”, ylab=”ampiezza”)

# for(i in 1:10000000) i=i

# lines(phi,type=”l”)

plot(phi,type=”l”,main=”PERIODOGRAMMA di dati”,
xlab=”Armoniche = N° osclllazioni in 21 dati”, ylab=”Fase”)

}

FINE SUBROUTINE ANALISI FOURIER

Richiamo function

PRDGRAM(yt,m)           # gira la function del periodogramma di yt ed esce il seguente grafico:

Il grafico è l'output della prima parte del programma relativo al periodogramma con R

SCRIPTS del PERIODOGRAMMA seconda parte

#ESERCITAZIONI COL PROGRAMMA SCRITTO IN R vers. del 16-07-19011

#Nel precedente intervento simulavamo ad hoc una serie storica
#’tabellando’ 21 dati da tre funzioni del seno con costante additiva 100,
#con ampiezze rispettivamente 4,3,6 e ‘frequenze’ nell’ordine 2/21, 4/21,
#5/21 e infine fasi -pi/2, 0, -1.745.
#Abbiamo cioè calcolati in yt 21 dati attribuendo a t valori da 1 a 21
#nell’espressione scritta nel precedente listato. Tali dati rappresentavano
#proprio la nostra serie storica da sottoporre al Periodogramma. Tramite
#il nostro programma in R calcolammo allora i valori di ampiezze e fasi
#per le prime 10 armoniche riscoprendo nei dati le oscillazioni che c’erano.
#Per esercizio continuiamo a simulare serie storiche con espressioni
#di base analoghe modificandole, aggiungendo anche un trend lineare (x*t) e
#valori random onde controllare se il Periodogramma riesce a”sentire”,
#oltre alle oscillazioni armoniche, anche il trend e la componente casuale.
#Con l’istruzione ‘#’ elimineremo secondo la necessità le linee di
#programma non utilizzate per lo scopo prefissato.

#In ogni caso gli scripts dei programmi presentati possono essere trasferiti #direttamente sulla console di R con Copia-Incolla: il programma inizierà #nell’immediato a girare costruendo risultati e grafici i cui significati sono riassunti #nei remarks.

#Proveremo ad applicare il programma su 21 dati simulati dalle
#espressioni di una retta inclinata e da una serie random estratta da
#una distribuzione gaussiana. Intanto però sceglieremo una combinazione di seni
#interessanti più adatta a proseguire l’esercitazione.

#n=21

t=c(1:n)
#yt=0.5*t
# si tratta di una iperbole
#yt=c();yt[1:t]=0
#yt <- rnorm(t,0,1)
#yt=-4+ 0.5*t + rnorm(t,0,1)
#t=c(1:21)
#yt=100+4*sin(2*t/256*2*pi-pi/2)+3*sin(4*t/256*2*pi+0)+
#6*sin(5*t/256*2*pi-1.745) #analisi yt; tenendo come base questa espressione
# con armoniche basse, ro è sulla rampa alta dell’iperbole.
#yt=100+4*sin(2*t/n*2*pi-pi/2)+3*sin(4*t/n*2*pi+0)+
#6*sin(5*t/n*2*pi-1.745) + 0.1*t # analisi ytreg
#yt=100+2*sin(2*t/n*2*pi-pi/2)+sin(4*t/n*2*pi+0)+
#3*sin(5*t/n*2*pi-1.745) + rnorm(t,0,1)*2 # analisi ytrnorm: diminuiamo le
#ampiezze e aumentiamo i random
#yt=100+4*sin(2*t/n*2*pi-pi/2)+3*sin(4*t/n*2*pi+0)+
#6*sin(5*t/n*2*pi-1.745) + 0.5*t)+(rnorm(t,0,1)-1/2)) # analisi ytregrnorm
n=240

t=c(1:n);

yt <- 4*sin(5*t/n*2*pi)+2*sin(2*pi*30*t/n)+ 3*sin(40/n*t*2*pi)+0.1*t +
rnorm(n,0,1)*2    

# questa espressione con ‘frequenze’ alte (30,40) è
#più indicata a dimostrare che il Periodogramma ‘scopre’ anche trends
#e random oltre alle oscillazioni sinusoidali.

#Ora possiamo prevedere che cosa accade se togliamo una o due di queste tre #oscillazioni,
#basta far girare il programma nei diversi casi.
#In questo contesto al termine useremo invece, per esercizio, le
#tecniche di scomposizione di una serie storica:
#proviamo a ‘destagionalizzarla’ con due o tre medie mobili
#opportune (o magari col comando filter di R) per controllare che cosa
#rimane sottraendo da yt l’oscillazione relativa alla media mobile usata (che cosa accade ai random?). Potevamo anche’detrendizzarla’ prima
#con una regressione lineare, ovvero eliminare i random con una media
#mobile 3*3 ecc..

#m =(n-1)/2 # perchè n dispari

yt=as.vector(yt)

#m =(n/2-1) # perchè n pari

#Sarebbe possibile anche ‘meccanizzare’ il precedente processo.

m=50 # numero armoniche da cercare nei dati scelte manualmente

library(tseries)

PRDGRAM(yt,m)     #RICHIAMO DELLA FUNCTION e gira il periodogramma per i nuovi dati posti in yt::

Output della seconda parte del programma esercitazione sul periodogramma con R

Le linee successive sono in attesa di correzione-eliminazione se la function funziona!

#CENNI: ‘DESTAGIONALIZZAZIONE’ DEI DATI CON ‘FILTER’ E CON MEDIE MOBILI (da correggere e precisare: AD MAIORA!)

filt12 <- filter(yt,filter=rep(1/13,13))

filt12 <- as.vector(filt12);length(filt12)

x=seq(1:240)
fit12 <- lm(filt12~x)
summary(fit12)

b0=fit12$coefficients[1]

b1=fit12$coefficients[2]

y=b0+b1*x

ts.plot(filt12)

abline(fit12)

length(filt12);length(y)

for(i in 1:10000000) i=i

filt12=filt12[7:234]
y=y[7:234]

detrend <- filt12-y

acf(detrend)
for(i in 1:10000000) i=i
ts.plot(detrend)

for(i in 1:10000000) i=i

#par(mfrow=c(1,4)) # cancelliamo ‘#’ davanti a par per vedere i grafici insieme

ts.plot(yt); for(i in 1:10000000) i

filt12 <- filter(yt,filter=rep(1/13,13))

ts.plot(filt12);for(i in 1:10000000) i

filt72 <- filter(yt,filter=rep(1/73,73))

ts.plot(filt72);for(i in 1:10000000) i

filt96 <- filter(filt96,filter=rep(1/97,97))

ts.plot(filt96);for(i in 1:10000000) i

#E’ interessante notare con tre medie mobili centrate (non pesate!) di ordine #rispettivamente 12,72,96 in successione o come vi pare, possiamo eliminare da  yt #(con yt-filtn) i tre picchi (5, 30, 40) del periodogramma ‘applicato’  alla seguente #espressione  trigonometrica che simulava i dati:

# yt <- 6*sin(5*t/n*2*pi)  + 2*sin(2*pi*30*t/n) +
# 3*sin(40/n*t*2*pi) + 0.1*t + rnorm(n,0,1)*2,

# lasciando un’iperbole ‘pulita’  a rappresentare (da controllare!)
# la retta di regressione. Da ricordare come con le medie mobili
# si eliminano anche i valori casuali.

# Che cosa accade dei picchi se cambio n?

#n=100 #n° armoniche rilevanti rimarranno ancora a freq. 5, 30 40!

#Come esercizio ‘inventiamo’ una routine che calcoli una media mobile

#di ordine k (es.,k=12)

k=12
k=k/2+1 #se pari
k= k=(k-1)/2 #se k=pari

yt=as.vector(yt) #yt è il vettore su cui si applica la media mobile
ly=length(yt)
filt=c()
for(t in 7:ly){filt[t]=
(yt[t-6]/2+yt[t-5]+yt[t-4]+yt[t-3]+yt[t-2]+yt[t-1]+yt[t]+
yt[t+1]+yt[t+2]+yt[t+3]+yt[t+4]+yt[t+5]+yt[t+6]/2)/13}
filt #Si confrontino i valori delle medie mobili calcolate con
filt12 #la definizione di media mobile e con il comando filter:
# E’ da notare che le due serie di valori differiscono perché la
# prima serie è ottenuta da una media mobile centrata e pesata.
# Eliminando la divisione per 2 dei termini estremi avremo lo
# stesso risultato (controllare).

Dott. Piero Pistoia 

Hello world!

PRECISAZIONI

Per il sillabario2013, WORDPRESS precisa che :<<Il materiale è stato raccolto come documentazione personale. Il testo non riveste quindi il carattere di ufficialità e non è sostitutivo in alcun modo delle pubblicazioni ufficiali che prevalgono  in casi di discordanza:>>

Per il contenuto personale invece noi precisiamo anche che :<< Se in ambiti complessi, il “diverso” personale potrebbe, di fatto, attivare dibattiti costruttivi verso nuova cultura:>>

CRITERI SU CUI FONDARE GLI OBIETTIVI DI QUESTO BLOG

Abbiamo iniziato a costruire – e continuerà per lungo tempo – il nostro blog al fine di sviluppare un’interfaccia dinamica fra mondo scolastico e mondo extra scolastico s.l. e quindi, nelle intenzioni, porsi come ideale regolativo anche per i due tipi di cultura sociale oggi predominanti.

1) La vasta cultura unidirezionale, “arruffata” (mescolata col niente), tout- court, controllata dai mass media e 2) quella più indirizzata e sempre più diffusa  (forse a causa di una scuola sempre più assente) propria degli interventi culturali dei diversi organi sociali (che fanno capo a Regioni, Province, Comuni, Banche, Centri culturali …).

LA CULTURA DEI MASS MEDIA IN PARTICOLARE DELLA TELEVISIONE

Si tratta di una comunicazione culturale dove la rappresentazione delle idee si sostituisce alle idee stesse, dove si attiva il fenomeno dell’atonceness (immediatezza) e dell’identificazione medium-messaggio con indebolimento del messaggio. Ciò comporta una scarsa integrazione ed accomodamento fra le diverse parti che costituiscono il “mosaico” funzionale  del nostro cervello. Si vengono ad indebolire i processi di memorizzazione a lungo termine e ci si abitua a ritmi di informazione ripetitiva e superficiale, che inibiscono la crescita delle capacità di attenzione, di riflessione e di elaborazione della gente, rendendola insofferente e chiusa all’ascolto di problematiche di più alto spessore.

LA CULTURA OFFERTA DAL SOCIALE

Questo tipo di comunicazione è, a nostro avviso, talora settoriale, demagogica, colorata e spesso marginale, che si configura, nel migliore dei casi, più come strumento di socializzazione e di condivisione nel tentativo di evocare legami di popolo più che di gente. Parliamo della cultura del folclore e di quella volta alla valorizzazione del pensiero e delle opere dei nostri personaggi del passato. Certo non sarà marginale se, oltre a rafforzare legami di gruppo, opera in teatri simbolicamente qualificati e permette l’inserimento dei nostri “oggetti” culturali in circuiti di fruizione turistica.

L’ANELLO RETROATTIVO SCOLASTICO-EXTRASCOLASTICO

Per svolgere questa meta-funzione ilsillabario2013 occuperà una nicchia culturale propria, libera e diversa, agganciandosi alla Scuola (con coinvolgimento intensivo di docenti) per espandersi alla sua frontiera, aprire possibilità all’educazione permanente e ricorrente per ritornare sulla Scuola a ciclo ricorsivo (anello retroattivo positivo). Tale comunicazione, che si situa nell’area della complessità, può non solo rafforzare il background culturale di base (corrispondente alla comunicazione scolastica), cercando di ovviare ad un analfabetismo generalizzato di ritorno e di riappropriarsi della possibilità di autoaggiornamento da parte dei docenti, ma può modificare l’ambiente culturale scolastico che a sua volta inciderà nuovamente sulla frontiera e così via fino ad un punto di biforcazione di non ritorno, come si evince dalla teoria del caos, dal quale potrebbero emergere spontaneamente nuove forme di ordine, veri e propri salti qualitativi nella comunicazione culturale (nuovi modi di comunicare concetti, nuovi approcci al rapporto insegnamento/apprendimento…).

Per entrare nel merito del programma leggere: L’EDITORIALE ED ALTRO

PF.Bianchi  -> Amministratore del Sito

PF.Bianchi-P.Fidanzi-P.Pistoia-R.Veracini:  (promotori del blog “ilsillabario2013”)