“UN APPROCCIO DIDATTICO OPERATIVO ALLA ANALISI DI FOURIER SU DATI SPERIMENTALI E SIMULATI COL SUPPORTO DEL SOFTWARE MATHEMATICA DI WOLFRAM; cenni al rapporto fra senso comune ed insegnamenti dei saperi preposti alle scelte”; del dott. Piero Pistoia

Per leggere lo scritto guida del dott. Piero Pistoia in pdf cliccare sul link seguente:

ARTFOUART-math1OK

Per seguire le esercitazioni col MATHEMATICA e vedere i grafici relativi  integrare con  il post “Un parziale percorso di base sulla analisi di una serie storica reale“; in particolare: Appendix5 che comprende “math_funzione_premessa1 in pdf” scritto sempre di Piero Pistoia

EPISTEMOLOGIA E DIDATTICA DELLE SCIENZE, dell’accademico dott. prof. Silvano Fuso, chimico normalista; un aforisma di Anonimo

POST in via di costruzione…

Articolo trasferito da “Didattica delle Scienze” N. 174, La Scuola, Brescia.

Ringraziamo Autore e Redazione se ci permetteranno di mantenerlo su questo blog, che è senza alcun fine di lucro e completamente auto-finanziato il cui unico scopo è la comunicazione culturale. Questo blog, per sua scelta, non riceve alcun contributo sociale o di altra natura. Altrimenti, avvertiti alla mail dell’Editore del blog, ao123456789vz@libero.it, lo sopprimeremo.

Per leggere l’articolo del prof. Fuso, cliccare sul link:

Epistemologia_Scienze0001

 

BREVE TRACCIA DEL CURRICULUM DI SILVANO FUSO

Silvano Fuso, nato nel 1959 a Lavagna (GE), ha studiato alla Scuola Normale Superiore di Pisa  e all’Università di Genova. È laureato in chimica (indirizzo chimico-fisico) con 110/110 e lode; ha conseguito il titolo di Dottore di Ricerca in Scienze Chimiche

Ha svolto, per diversi anni, attività di ricerca nel campo della spettroscopia molecolare presso l’Università di Genova. È coautore di diverse pubblicazioni nel settore su riviste internazionali (Journal of Chemical Physics, Physical Review, Makromolecular Chemie, ecc.) e ha presentato diverse comunicazioni a congressi nazionali e internazionali.
Dal 1987 è docente di ruolo di chimica nelle scuole superiori. Si occupa di didattica delle discipline scientifiche e di divulgazione e collabora con diverse riviste (quali Nuova SecondariaDidattica delle Scienze, ResIterLe Scienze, Explora, Scoprire, Magia, Coelum) e con diversi siti Internet.

image

Silvano Fuso

Si interessa da tempo di indagini scientifiche sul presunto paranormale e di pseudoscienze. È socio effettivo del CICAP (Comitato Italiano per il Controllo delle Affermazioni sul Paranormale ), responsabile educazione del medesimo Comitato e segretario regionale del CICAP-Liguria . Ha collaborato per anni con la rivista Scienza & Paranormale, periodico ufficiale del CICAP, curando le rubriche “Come funziona la scienza”, “Mi è successo! È paranormale?” e “Il terzo occhio”. Fin dalla sua nascita, collabora con la nuova rivista del CICAP “Query”, dove tiene la rubrica “Non è mai troppo presto”.
È autore del libro Facili esperimenti scientifici (Edibrico, Gavi Ligure 1994), coautore di due testi di fisica e chimica per le scuole superiori: S. Fuso, C. Nicolini, Fisica e chimica: un approccio sperimentale alla scienza della materia (G.B. Palumbo Editore, Palermo 1998) e S. Fuso, C. Nicolini, Scienza della materia: un approccio sperimentale (G.B. Palumbo Editore, Palermo 1999) e del testo di ricerca didattica: P. Gentilini, G. Manildo e S. Fuso, Competenza razionale e didattica dei saperi di base (Franco Angeli, Milano 2007). E’ inoltre autore del libro La scienza come gioco. Capire la realtà divertendosi (La Meridiana, Molfetta 2004).
Relativamente al paranormale e alle pseudoscienze ha pubblicato i seguenti volumi: Realtà o illusione? Scienza, pseudoscienza e paranormale, Edizioni Dedalo, Bari 1999 (presentazione di Piero Angela); Paranormale o normale? Una guida per scoprirlo, CICAP, Padova 1999 (presentazione di Tullio Regge), ad uso degli insegnanti che vogliano affrontare in classe il problema del paranormale e delle pseudoscienze; Indagare i misteri, Editoriale Scienza, Trieste 2004 (pesentazione di Piero Angela), destinato ai ragazzi; Pinocchio e la scienza. Come difendersi da false credenze e bufale scientifiche, Edizioni Dedalo, Bari 2006 (prefazione di Tullio Regge); Strategie dell’occulto. Come far apparire vere cose palesemente false (in coll. con I. Torre), Edizioni Armando, Roma 2007; 100 Domande & Risposte. Sul paranormale, l’insolito, i misteri e le pseudoscienze, CICAP, Padova 2007; I nemici della scienza. Integralismi filosofici, religiosi e ambientalisti, Edizioni Dedalo, Bari 2009 (prefazione di Umberto Veronesi); Mai fidarsi della mente: n+1 esperimenti per capire come ci inganna e perché (autori principali: S. Della Sala e M. Dewar), Edizioni Laterza, Roma-Bari, 2010; Il libro dei misteri svelati. Una lucida analisi denuncia millenni di superstizioni e inganni interessati, Castelvecchi Editore, Roma 2010 (Prefazione di Silvan); Superstizione. Istruzioni per l’uso. In che cosa si crede e perchè, CICAP, Padova 2010; La falsa scienza. Invenzioni folli, frodi e medicine miracolose dalla metà Settecento a oggi Carocci, Roma 2013.
Ha inoltre collaborato alla realizzazione di diversi volumi collettanei.
Tiene abitualmente conferenze su tematiche legate alla divulgazione scientifica, al paranormale e alle pseudoscienze. Sugli stessi argomenti ha partecipato a diverse trasmissioni televisive a livello nazionale (RaiUno, RaiDue, RaiTre, TelePiù, Italia 1) e locale (Rai Tre-Liguria, TeleGenova, TeleNord, Telecittà , Primocanale) e a diverse trasmissioni radiofoniche (RadioUno, RadioDue, RadioTre, Radio Svizzera Italiana, ecc.).

Curiosità: il 27 gennaio 2013 il Minor Planet Center dell’International Astronomical Union  ha intitolato a Silvano Fuso un asteroide  in orbita tra Marte e Giove.

Per maggiori dettagli si veda il suo sito personale: www.silvanofuso.it 

‘VERISIMIGLIANZA’, VERITA’ E APPROSSIMAZIONE ALLA VERITA’, scritto di Dario Antiseri – Giovanni Federspil; a cura dell’Editore del blog Piero Pistoia

Post in via di costruzione…

Questo scritto è stato trasferito da ‘Didattica delle Scienze’ N. 75, Ed. La Scuola, Brescia. Ringraziamo autori e redazione se ci permetteranno di mantenerlo sul nostro blog, senza alcun fine di lucro e completamente auto-finanziato, il cui unuco scopo è la comunicazione culturale gratis; di fatto non riceve alcun contributo sociale o di altra natura, per nostra scelta; altrimenti, avvertito l’Editore del blog, alla mail ao123456789vz@libero.it, verrà soppresso.

Per leggere in pdf lo scritto di Antiseri e Federspil, cliccare sul link seguente:

VERISIMIGLIANZA E VERITA’0001

HYPOTHESIS NON FINGO: EPPURE IL METODO INDUTTIVO NON ESISTE; scritto dell’epistemologo accademico Dario Antiseri; a cura del dott. Piero Pistoia

POST in via di sviluppo…

Questo scritto è stato trasferito da ‘Didattica delle Scienze’ N. 66, Ed. La Scuola, Brescia. Ringraziamo autori e Redazione se ci permetteranno di mantenerlo sul nostro blog; altrimenti, avvertito l’Editore del blog – che è senza alcun fine di lucro e completamente auto-finanziato, il cui unico scopo è la comunicazione culturale gratis e di fatto con riceve alcun contributo sociale o di altra natura, per nostra scelta –   alla mail ao123456789vz@libero.it, verrà soppresso.

Leggere l’articolo di Antiseri in pdf, cliccando sul link seguente:

INDUZIONE FISICA0001

MEMORIA BIOLOGICA MONDO 3 E STATI PROBLEMATICI OGGETTIVI; scritto dell’accademico epistemologo Dario Antiseri; a cura dell’Editore Piero Pistoia

Questo post è invia di costruzione…

Questo scritto è stato trasferito da ‘Didattica delle Scienze’ N. 68, Ed. La Scuola, Brescia. Ringraziamo autori e Redazione se ci permetteranno di mantenerlo sul nostro blog, senza alcun fine di lucro e completamente auto-finanziato, il cui unico scopo è la comunicazione culturale gratis (non riceve infatti alcun contributo sociale o di altra natura, per nostra scelta); altrimenti, avvertito l’Editore del blog, alla mail ao123456789vz@libero.it, verrà soppresso.

Leggere in pdf lo scritto del dott. prof. Dario Antiseri, cliccando sul link seguente, scusandoci delle varie ‘evidenziature’ dovute ad intense letture:

ANTISERI_MEMORIA BIOLOGICA_mondo30002

RISOLVERE PROBLEMI PER CONQUISTARE IL SAPERE: da non confondere i problemi con gli esercizi; dell’epistemologo Dario Antiseri, a cura dell’Editore del blog Piero Pistoia

Post in via di costruzione…

Questo rilevante scritto su cui meditare, specialmente  in questi  momenti di cambiamenti rapidi e poco riflessivi e quindi di incertezza per i quadri a tutti i livelli della gestione scolastica – dai docenti, ai dirigenti, ispettori, ai ministri, sotto segretari ecc.; sembra quasi che la loro efficacia diminuisca con l’aumentare del livello e con i cambi di governo  – questo scritto, dicevo, è stato trasferito dalla rivista Scuola Italiana Moderna, Editrice La Scuola-Brescia, del novembre 1985 e si ringrazia la rivista e l’autore se ci permetteranno di lasciarlo nel nostro blog; che non ha alcun fine di lucro, auto finanziato (non riceve, per nostra scelta, alcun contributo esterno) il cui unico scopo è la comunicazione culturale gratis; in caso contrario si  avverta, tramite mail ao123456789vz.libero.it, l’Editore del post (Piero Pistoia) che lo sopprimerà.

Sintetica premessa dell’Editore del blog Piero Pistoia

Si narra di un metodo, che l’uomo sembra sia riuscito a consapevolizzare, sotteso a tutto ciò che vive, compreso l’animale e la pianta. Nell’animale e nella pianta viene incarnato, nel processo ontogenetico che ricapitola la filogenesi, nei tessuti vitali e funziona attraverso il metodo delle soluzioni provvisorie in competizione (omologhi biologici delle teorie) e della eliminazione degli errori. Il prodotto esosomatico, per es. la tela del ragno, corrisponderebbe così ad organi endosomatici ed ai loro modi di funzionare (1). Il sapere non viene  acquistato, cioè travasato nella mente del discente (la Scuola non è  un mercato!), ma deve essere conquistato (acquisire i saperi è fatica!) sotto la guida del docente (2), onde abbreviare, costretti dai programmi ministeriali,   il lungo tempo nella costruzione della disciplina avvenuta  di fatto nella storia reale dei saperi (la Scuola deve trasformarsi in centro di ricerca!). In questo contesto sembra risolversi anche il delicato problema del rapporto insegnamento/apprendimento e dell’uso nella didattica di un metodo di fatto più semplificato – il Falsificazionismo popperiano (3) – rispetto allo stesso sottoposto successivamente a critica (4), probabilmente più usato nella storia reale dei saperi (5). In definitiva si deve <Ri-fare> con gli allievi il sapere <Già fatto>. Durante questo processo gli <sbagli>, che dipendono dal soggetto che li commette, diventeranno <errori>, cioè sbagli inevitabili, per cui non si deve più “innescare quel perverso meccanismo che è la paura dell’errore” (l’errore diventa necessario all’acquisizione dei saperi).

VIVERE E’ IMPARARE (Konrad Lorenz), VIVERE E’ RISOLVERE PROBLEMI  (Karl Popper),  QUINDI IMPARARE E’  RISOLVERE I PROBLEMI E, INFINE,  RISOLVERE I PROBLEMI E’ ANCHE IMPARARE A VIVERE (Dario Antiseri).

NOTE

1 – K. Popper “Epistemologia senza soggetto conoscente”, Armando.

2 – Per chiarire cercare il tag  ‘Bruner’ in questo blog.

3 – Il falsificazionismo popperiano, fondato logicamente dal Modus Tollens (tag nel blog), a differenza dell’illogico Induttivismo, basato sulla fallacia nell’affermare il conseguente, diventa di certo più rilevante ed efficace in una comunicazione didattica come quella proposta.

4 – Per chiarirsi, cliccare, per es.,  sui tag ‘Dalla scienza alla narrazione’, ‘Critica al falsificazionismo popperiano’, ‘Quine‘, …)

5 – Per chiarire cercare, per es., i tag ‘Popper, Induzione e Deduzione’, … in questo blog)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Leggere l’articolo del dott. prof. Antiseri, scusandoci per le ‘evidenziature’ nel Testo (segno di intensa lettura del dattiloscritto), cliccando sul link sotto:

ANTISERI P1_TT_EE_P2

Per una ‘narrazione’ sulla epistemologia possiamo, per es.,  leggere, ancora in questo blog,  “La Teoria e la Realtà”, “Dalla Scienza alla Narrazione”, “Commento alla poesia <Non chiederci parola> Montale” ed altro.

ASPETTI DEL RAPPORTO: MOMENTO DISCIPLINARE/MOMENTO SOCIALE NELL’INSEGNAMENTO SCOLASTICO; di A. Pazzagli-P. Pistoia

INSEGNAMENTO SCOLASTICO: MOMENTO DISCIPLINARE/MOMENTO SOCIALE

A. Pazzagli – P. Pistoia

  1. Oggi esistono due istituzioni rivolte a promuovere la comunicazione culturale e la costruzione della conoscenza:   l’istituzione scolastica ed il complesso delle istituzioni culturali emanate a vari livelli dai corpi sociali (enti locali, Provincie, Comunità Montane…).
  2. Questa bipolarità di istituzioni suppone due modalità di approccio sostanzialmente diverse al problema della comunicazione culturale e della costruzione della conoscenza.
  3. Una riflessione epistemologica sul modo in cui la cultura umana si è costruita ed un’analisi psicologica su come il cervello umano acquisisce conoscenza, ci ha chiarito come il Terzo Mondo di Popper si articoli in strutture disciplinari che si configurano come unici strumentiefficaci per sezionare l’oggetto complesso (sociale e/o naturale) in vista della sua razionalizzazione (cioè comprensione tramite il cervello umano). Di qui la risposta al delicato problema didattico del come sviluppare le potenzialità cerebrali tramite l’insegnamento delle discipline.
  4. Ne deriva che l’attività centrale dell’istituzione scolastica si situa in prospettiva disciplinare, proprio perché solo in tale prospettiva si aiuta la crescita intellettuale durante lo sviluppo.
  5.  Sorge di qui il problema di come costruire la struttura disciplinare.Sembrano esistere due tentativi di risposta al problema, alternativi e talora opposti:  a) La costruzione disciplinare prevede di partire dall’oggetto sociale complesso e a valenza interdisciplinare per costruire le singole discipline che ritorneranno poi sull’oggetto sociale provocandone per altro un arricchimento. Questa posizione, di chiara matrice deweyana, è ripreso in parte, per es., dalla stessa Tornatore che però è poi costretta a riconoscere che spesso la costruzione disciplinare prosegue per conto proprio senza possibilità di un ritorno interdisciplinare, sottolineando che l’unico vantaggio di tale metodo è la sensibilizzazione iniziale degli studenti ai problemi sociali, senza promozione di alcuna reale maturazione intellettiva. b) La costruzione disciplinare è tutta interna alla disciplina e si esplica attraverso le fasi della scoperta in cui si ritrova la sequenza popperiana dell’ipotesi e della falsificazione, attraverso i momenti curricolari ben programmati che hanno come strumento essenziale l’esperimento “pulito”. Questi momenti di costruzione seguono momenti di stasi, di ripensamento, di esercitazione, nei quali gioca un ruolo essenziale l’esperimento “grezzo”. E’ la fase dove, attraverso anche i primi tentativi si sezionare l’oggetto complesso a valenza interdisciplinare, si aumentano le possibilità del trasfer of training (termine popperiano). La costruzione disciplinare procede a gradini; ogni gradino si configura, per es., come unità didattica e ad ogni gradino ci si sofferma  per acquisire, su quella struttura parziale, competenza ed abilità crescenti, per trovare, nel ripensamento, la sorgente dei problemi che portano al gradino successivo.
  6. Le attuali esperienze scolastiche italiane, come conferma anche una lettura delle programmazioni a vario livello, non partono né dai presupposti di tipo a) tentativi di costruzione disciplinare a partire dall’oggetto sociale, né tanto meno da quelli di tipo b) costruzione disciplinare interna con ritorno periodico all’oggetto sociale. In effetti prevale una progettazione esterna a qualsiasi serio discorso pedagogico con fondamenti psicologici ed epistemologici coerentemente utilizzati: si nutre così una fiducia cieca che il semplice avvicinamento ad oggetti sociali, ( fatto anche al di fuori di qualsiasi impostazione scientifica propria delle stesse scienze sociali), garantisca una più alta efficacia formativa. Nel migliore dei casi si produce una  attività di tipo integrativo guidata dai superati criteri della pedagogia del “Tatonnement” (processo per tentativi ed errori), cui si affianca uno stentato ed insufficiente apparto disciplinare che rimane dopo tutto di carattere tradizionale. Si è ben lontani dunque  dalla più meditata proposta deweyana che condiziona l’efficacia del sociale alla mediazione del filtro culturale operata dalla scuola.
  7. In effetti si nota, in un mare di genericità, l’emergere occasionale di spunti pedagocici troppo spesso scarsamente riflessi quindi non utilizzati. Si parla, per es., dello stare insieme operando come finalità di primaria importanza, ma poi si precisano i rapporti delicati fra  i componenti del gruppo che opera (dinamica di gruppo e relative problematiche), Si teorizza una scuola “serena”,  dimenticando che la “scoperta” presuppone la febbre della ricerca della soluzione e l’ansia della conoscenza. “Serena” non sarà neppure la convivenza nel gruppo come un fatto acquisito naturale: vi sono infatti conflitti da superare in senso tendenziale (fine regolativo), fino ad arrivare ad un equilibrio dinamico fra il leader ed il gruppo strutturato. Si pone l’obbiettivo della socializzazione calibrandola sulle richieste delle teorie del senso comune e fraintendendola così con l’ “adattamento” passivo e privo di ogni connotazione culturale. In effetti nel passaggio dall’Io infantile provvisorio all’Io adulto (processo che occupa la pre-adolescenza e gran parte dell’adolescenza), ha importanza notevole il Mondo 3 di Popper e l’esigenza ad esso correlata dell’assunzione di una prospettiva disciplinare, nella misura in cui la identificazione personale avverrà a più alto livello e non a quello di una socializzazione meramente adattiva agli stimoli ambientali. Troppo spesso infatti si trascura la Letteratura e la stessa Storia viste come matrici di metafore mitiche utili appunto a favorire la consapevolezza della propria identità psicologica e storica, diventando in tal modo per i giovani quasi obbligante il riferimento ai modelli ed ai miti non validi proposti dall’industria culturale. Ma forse queste incompiutezze scientifiche dei progetti scolastici sono la conseguenza immediata di concrete situazioni poco razionalizzabili che continuamente si ritrovano nella scuola di oggi dopo la notevole scoperta dei problemi dell’handicappato e dello svantaggiato, ma con i successivi tentativi robinsoniani di portare loro soluzione in seno alle vecchie strutture.
  8. Il riaffermare, come a noi pare giusto, il primato del disciplinare dentro la scuola non esclude affatto a) la possibilità di un rapporto della scuola stessa col sociale diversamente vista, ma più efficace; b) il riconoscimento dell’importanza centrale che, nel quadro dell’educazione permanente, può assegnarsi all’intervento formativo culturale delle strutture sociali in un contesto metodologico più aderente alla legge della comunicazione culturale secondo finalità collaboranti con quelle della scuola in vista dell’integrazione culturale. Il primo aspetto sottolinea la distinzione fra esperimento “pulito” ed esperimento “grezzo”,  dove quest’ultimo, favorendo allargamento di competenza mediante “trasfer” alla Popper, consente una più efficace costruzione disciplinare e quindi favorisce un’accresciuta maturazione intellettuale. Il secondo aspetto sembra presentare tre componenti che corrispondono poi a tre possibilità di intervento del sociale, differenziate, ma non contrastanti. Prima possibilità, il sociale potrebbe farsi carico di affrontare lo studio di discipline o settori di conoscenza che la scuola spesso trascura, fuori dai corsi indirizzati, (ecologia, linguaggi estetici, agraria, urbanistica… e forse anche il settore sportivo). Seconda possibilità, il sociale potrebbe intervenire,  nel processo di comprensione dell’oggetto complesso, utilizzando gli strumenti razionali acquisiti scolasticamente, in maniera che il processo di sezionamento razionale “derivi” dalle teorie acquisite, andando oltre il consueto taglio educativo dei corsi professionali. Con la terza possibilità, il sociale potrebbe ripetere il procedimento dall’esperimento “grezzo” all’esperimento “pulito” in un percorso a più alto livello, portando ad utilizzare come esperimento “grezzo” lo stesso oggetto dell’attività lavorativa.

 A. Pazzagli – P. Pistoia

DA TERMINARE…

EPISTEMOLOGIA, PSICOPEDAGOGIA, INSEGNAMENTO DELLA FISICA E RIFORMA DELLA SCUOLA a cura del dott. Piero Pistoia; post aperto a più voci.

EPISTEMOLOGIA, PSICOPEDAGOGIA E INSEGNAMENTO DELLA FISICA NELL’OTTICA DI UNA RIFORMA SCOLASTICA 

a cura del dott. prof. Piero Pistoia

TITOLI DEGLI ARTICOLI IN QUESTO POST

(1) – I fondamenti psicologici ed epistemologici dell’insegnamento della Fisica;  scritti di Piero Pistoia e Andrea  Pazzagli

(2) – I processi di ‘comprensione’ e la loro utilizzazione per  l’insegnamento di un concetto fisico: scritto del dott. Piero Pistoia

(3) – I fondamenti psicologici ed epistemologici della Riforma Scolastica. scritti di Andrea Pazzagli e Piero Pistoia

I TRE INTERVENTI, SCRITTI NELL’INTERVALLO FINE 1977 – INIZIO 1980, NACQUERO, ALCUNI,  DALLA COLLABORAZIONE FRA UN MAESTRO DELLA SCUOLA PRIMARIA ED UN DOCENTE DELLA SCUOLA SUPERIORE E FURONO PUBBLICATI DALL’EDITORE LOESCHER NELLA RIVISTA QUINDICINALE, ‘LA RICERCA’, AD ALTA DIFFUSIONE NELLA SCUOLA SUPERIORE.

Gli autori ritengono che i concetti e processi qui riportati, per alcuni versi, possano essere considerati ancora attuali e rilevanti, vista anche la direzione-redazione universitaria della rivista (Maria Corda Costa,  Elena Picchi Piazza ed altri), dove furono pubblicati ( da immettere le coordinate precise delle riviste interessate)

EPISTEMOLOGIA_E_FISICA0001 (1) (2)

EPISTEMOLOGIA-FISICA0001 (3)

Gli articoli qui riportati sono stati considerati rilevanti ancora oggi dalla dott.ssa Manuela Vecera, psicologa psicoterapeuta.

 Vedere su questo blog anche altri interventi di Piero Pistoia, su proposte di varie lezioni scolastiche ed altro, in particolare:

   IL MONDO DELLA SCUOLA ED IL MONDO DEL LAVORO: un rapporto difficile

Curriculum di piero pistoia:

piero-pistoia-curriculumok (0)

CONFLITTI ANCHE NELLA DIDATTICA SCIENTIFICA del dott. prof. Antonino Drago, Università di Pisa

INSERISCO L’ART. IN PDF CON UN LINK ESTERNO:

DRAGO_ConflittilDidattSci

IN .ODT:

DRAGO_ConflittilDidattSci

ALTRIMENTI LEGGERE DIRETTAMENTE L’ART. UN PO’ MENO ORDINATO:

L’INTRODUZIONE DEL CONFLITTO ANCHE NELLA DIDATTICA SCIENTIFICA 
di Antonino Drago, Università di Pisa
  1. La nascita e lo sviluppo del conflitto intellettuale

La nostra cultura didattica è interna alla cultura occidentale, che a sua volta, è figlia della cultura greca, quella che anche nella scultura rappresentava idee fissate di cose astrattizzate. Il conflitto delle idee era estraneo ad essa, non tanto perché non l’avesse mai pensato (ricordiamo che per Eraclito tutto era conflitto), ma perché la prima esperienza di conflitto intellettuale che aveva subito (la crisi dei sofisti che dimostravano il vero e poi il falso) li ha spinti a restaurare la sicurezza nella razionalità. Ciò ha portato a costruire o un mondo di idee assicurate dalla metafisica (le idee platoniche) o un sistema sicuro perché onnicomprensivo (quello di Aristotele), tanto da includere anche la teoria delle leggi con cui la mente ragiona (logica) e la teoria della teoria, che deve avere la forma deduttiva.

Il conflitto intellettuale perciò nasce dopo il mondo intellettuale greco. In particolare nasce nella scienza quando nel sec. 17° la matematica introduce il concetto di infinito nella Fisica in una maniera molto robusta (analisi degli infinitesimi). Si crea il conflitto tra il nuovo mondo (scientifico) e il vecchio mondo della antica Grecia, che volontariamente si era chiuso all’idea dell’infinito; e si crea il conflitto tra cultura scientifica e cultura umanistica, perché questa cerca di restare nel finito tipico dell’umano soggettivo.1

Poi la rivoluzione francese ha generalizzato il conflitto dentro la cultura (oltre che nella società); e non a caso poi questo movimento fu represso per un intero periodo dalla politica della restaurazione di quella pace intellettuale che c’era prima. Infine è stato Marx che nella teoria della società ha introdotto il conflitto tra gruppi sociali. Questo processo storico dell’intellettualità occidentale poi si è ribaltato sul soggetto; Freud, (mettendo da parte l’anima umana della scolastica, divisa nei tre elementi armonici: memoria, intelligenza e volontà) ha introdotto il conflitto di tre componenti della personalità umana, irriducibili e incompatibili tra loro Es, Io e Super-io. Infine, anche nel luogo privato dei potenti industriali, la fabbrica, è entrato ufficialmente il conflitto: è dall’inizio del sec. XX che si ammettono legalmente i sindacati, preposti a interpretare e risolvere i conflitti collettivi degli operai col padronato.

Possiamo concludere che la cultura moderna, in opposizione a quella antica, è caratterizzata essenzialmente dal conflitto.

  1. L’introduzione del conflitto nella didattica in generale

Quanto di questo travaglio millenario della cultura (occidentale) è stato recepito dalla didattica scolastica?

Sembra poco o niente. Anzi si può sostenere che la scuola, in corrispondenza ad un disegno autoritario che vuole tutto “in pace”, giunge a mutilare anche la cultura scientifica quando questa include dei conflitti. Infatti, perché a scuola non si insegna logica? Forse non è una scienza? Eppure lo era già nel medio evo, quando veniva insegnata nel famoso “trivio” (grammatica, retorica e logica). Poi dal 1848 la logica è diventata addirittura una scienza matematizzata. Così pure, non è forse una scienza l’economia? Lo afferma autorevolmente l’Università, che ci ha istituito una Facoltà (Scienze economiche). Come pure ha istituito Scienze Politiche. Ma allora perché tuttora non si insegnano queste materie nei licei italiani? Può essere discutibile che si insegnino le scienze politiche, ma non che si elimini la logica.

La risposta alla domanda precedente è: perché quelle sono materie conflittuali: perciò non possono essere insegnate ex-cathedra con affermazioni tali che, se lo studente le ripete allo stesso modo, viene approvato, altrimenti viene bocciato. Infatti la scienza logica è essenzialmente conflittuale: dopo la nascita della logica matematica (1848) alla fine del secolo XIX è nata prima la logica matematica modale, poi quella intuizionista, poi quella minimale, ecc. Questo conflitto è evidente sin dalla operazione logica più importante nei ragionamenti, la implicazione. Nella logica classica la implicazione è chiamata “materiale”, perché permette che dal falso segua il vero, il che non corrisponde affatto al senso intuitivo che la nostra mente dà all’implicazione. La logica modale è nata proprio per cambiare questa formalizzazione. Se a scuola si insegnasse una sola logica, qualsiasi studente potrebbe trovare in libreria libri sulle logiche non classiche, impararle e poi in classe contestare l’insegnante sulla unicità della logica insegnatagli.

Quindi si insegna solo ciò che è sicuro e che preserva l’immagine di una scienza “in pace”, che dà solo risposte univoche e indiscutibili.

Ma ci sono stati dei fatti storici che hanno smosso dalla fissità statica secolare questa situazione della didattica scientifica, per accettare il conflitto almeno dentro la struttura didattica.

Il primo fatto è stato quello della riforma della scuola media inferiore nel 1963. Prima quella scuola era sì divisa da quella di avviamento, ma non per motivi culturali, ma di classe. Cioè nella struttura scolastica il conflitto c’era, ma come conseguenza del più ampio e forte conflitto sociale. Nella scuola di avviamento (al lavoro, il più presto possibile) non c’era cultura; l’unica cultura era quella delle persone benestanti; essa passava nella scuola media con il latino, in modo da preparare gli studenti alla cultura greco-romana insegnata al liceo classico, o al più, nel liceo scientifico (quel liceo che aveva creato una variante, ancora sub judice, includente la cultura scientifica,.

Ma quando c’è stata la riforma della scuola media unica, il conflitto è entrato nelle scuole medie, in ogni classe. Poiché il latino è diventato a scelta, il percorso precostituito della cultura greco-romana ha perso importanza e la cultura è diventava un fenomeno per la massa, nella quale si potevano incrociare tanti tipi di cultura; tanto per cominciare, quella classica e quella scientifica, che ora non poteva essere più tenuta sub judice. Di fatto, poi fu la cultura dei mass media a prendere il sopravvento su tutta la cultura della scuola media; e i mass media avevano una pluralità di culture (o subculture: quiz, sport, varietà, spettacoli, cultura tradizionale, ecc.).

(In quel tempo anche l’Università ha tolto quegli sbarramenti ai diplomati degli istituti tecnici e magistrali che prima imponevano la cultura greco-romana anche ai futuri medici e fisici. Anche i professori universitari hanno dovuto adattarsi ad una pluralità di formazioni di base).

Poi la struttura scolastica è stata sconvolta dai “decreti delegati” del 1974; essi hanno accettato il conflitto nell’organizzazione della vita scolastica: gli studenti sono stati riconosciuti come un soggetto collettivo che a pieno titolo partecipa alle decisioni scolastiche e può contestarle per legge. Uno studente che continuava a studiare leggi scientifiche, assicurate come indiscutibili, però nell’ambito scolastico poteva mettere in discussione tutta la organizzazione e tutte le dispozioni del preside. A mio giudizio, tuttora la scuola non si è ripresa da questa scossa destabilizzante i vecchi equilibri. Ma non si è ripresa anche perché non ha portato fino il fondo la accettazione del conflitto, cioè nella cultura scolastica.

  1. L’introduzione del conflitto nella didattica scientifica

La didattica scientifica è stata sconvolta proprio quando la cultura scientifica ha incominciato ad emanciparsi dalla posizione subordinata verso la cultura umanistica; allora è stato introdotto il conflitto almeno pedagogico. Questa è la storia dello Sputnik: curiosamente un oggetto missilistico è stato decisivo per la cultura scolastica.

Nel 1958 i russi, per primi, inviarono un satellite nello spazio; per di più lo Sputnik era grosso. Gli statunitensi stavano dormendo sonni tranquilli perché quando alla fine della guerra invasero la Germania sconfitta, si preoccuparono di catturare i massimi scienziati missilistici del tempo, in particolare von Braun, l’inventore delle famose V-1 e V-2 che avevano terrorizzato Londra. Grande fu quindi la loro sorpresa nel vedersi scavalcare nella gara spaziale. Dopo un anno dallo Sputnik, riuscirono ad inviare nello spazio a malapena un satellite di appena tre kg.

Il problema non era solo sportivo, ma era addirittura esistenziale. Infatti nei primi anni ’50 le due superpotenze avevano capito che, se in una guerra avessero usato le armi nucleari che esse possedevano, avrebbero creato un inferno sulla Terra, quindi anche per gli stessi vincitori. Perciò avevano concordato di sfidarsi piuttosto (o almeno, in prima battuta) su terreni meno disastrosi. La prospettiva della guerra militare fu sostituita dalla gara economica-tecnologica; i popoli si sarebbero convinti della giustezza del sistema o comunista o capitalista giudicando quale dei due sistemi avrebbe dato loro i benefici maggiori. Il comunismo era sicuro di vincere, perché la interpretazione (marxista) della storia dava il proletariato come la nuova classe destinata al potere mondiale.

Quindi la vittoria URSS dello Sputnik significava l’inizio della fine storica del capitalismo e del potere mondiale degli USA. Negli USA il momento fu drammatico; per reagire, essi cercarono di comprendere perché non aveva funzionato l’avere dalla loro von Braun. Allora notarono che sì, negli USA c’era un insuperato vertice di cervelli, ma la base di scienziati e tecnici era relativamente ristretta rispetto alla grande base di laureati nei corsi brevi dei Tecnicum russi; che quindi avevano sopperito alla qualità con la quantità.

Allora gli USA si posero il problema di aumentare il gettito del loro sistema scolastico nelle materie scientifiche. Il problema era grave, perché quello è un Paese estremamente liberista, che vede l’intervento statale come fumo negli occhi; figurarsi nel sistema educativo! Si risolse il problema convocando i migliori scienziati e facendoli applicare alla produzione di nuovi testi per le high school USA, testi da propagandare come i più avanzati possibile. Fu allora che nacquero i libri che poi sono restati classici: il PSSC (Physical Science Study Committee), il BSSC per la biologia, il MSP (Mathematics School Project)2 Dopo qualche anno anche l’Inghilterra intervenne, iniziando il progetto Nuffield. Questo progetto didattico sperimentò i nuovi testi per i vari rami scientifici in maniera collettiva, con riunioni annuali degli insegnanti che li adottavano. In Europa l’OCSE (organizzazione di cooperazione economica), in vista di una maggiore competitività economica, premette sui Ministeri dei vari Paesi affinché venisse adottata la cosiddetta “insiemistica”, cioè la ideologia matematica del Bourbaki nelle scuole.3 In Italia essa ebbe poco successo (portò a qualche modifica laterale dei testi scolastici); ma in Francia l’insegnamento della matematica fu stravolto, costringendo gli studenti delle elementari e medie a diventare incomprensibili ai loro genitori su questa materia.4

Come riassumere questa modificazione radicale della didattica scientifica? I vecchi metodi da insegnamento erano da catechismo: formule da imparare a memoria. In contrasto, la nuova didattica voleva rendere attraente la materia; non più matematica da inghiottire, non più formule dentro riquadri da saper applicare direttamente a primo colpo, non più solo figure geometriche e solo le essenziali. Invece, pistolotti motivazionali (“La fisica vale bene una vita”, “La fisica è bella”, “Se faccio, capisco”, ecc.), libri a colori, con figure in quantità e con fotografie (e magari fumetti e strisce di comics), proposta didattica la più possibile coinvolgente, insegnanti estroflessi e simpatici, svalutazione della esattezza dei risultati del lavoro dello studente per premiare invece il suo interessamento, ecc.. Tanto che il libro di testo non era più per lo studente, ma per l’insegnante; che così diventava il vero operaio della situazione, mentre lo studente viveva esperienze di gruppo (esperimenti) o intellettuali.

In sintesi, questa novità era la introduzione della pedagogia attiva nelle materie scientifiche; che finallora invece erano state funzionali ad una dura selezione per quelli che erano nati “piccoli scienziati”, o avevano il “pallino” della scienza. Di fatto, i contenuti erano rimasti quelli di prima, salvo aggiustamenti per facilitare l’apprendimento (nel PSSC fu anticipata la termodinamica-meccanica statistica perché si scoprì che così le ragazze imparavano meglio), o innovazioni per avvicinare lo studente alle notizie di giornale sulle nuove scoperte scientifiche (in Fisica si metteva qualcosa sull’atomo e magari sul nucleo; in biologia, si misero le prime novità del dopoguerra).

In breve, la nuova didattica scientifica voleva compiere una rivoluzione pedagogica nella didattica scientifica. Ci sarebbe riuscita se la riforma fosse stata obbligatoria. Ma, a cominciare dagli USA, il cui liberismo non poteva permettersi imposizioni didattiche, essa restò sempre compresente con la vecchia didattica; generando così, nell’insegnamento scientifico scolastico, un conflitto nei metodi educativi di insegnamento: il nuovo contro il vecchio (che all’Università è stato ancora più resistente).

Dopo circa cinquant’anni da questi avvenimenti, la situazione non è sostanzialmente mutata. Sempre c’è il conflitto tra pedagogie diverse; i programmi hanno sì introdotto molte innovazioni nei programmi didattici; ma sempre si sono mantenuto esclusi i conflitti esistenti all’interno dalle materie scientifiche. Per intendersi, talvolta si è anche introdotta la logica, ma solo per la parte più banale e senza far vedere quelle sue insufficienze che hanno fatto nascere le logiche matematiche alternative. In definitiva, il progetto autoritario della didattica scientifica ancora una volta non ha ammesso che lo studente, e neanche l’insegnante, discutessero sulla scienza, oltre che ripetere sempre la stessa la scienza.

In sintesi, il conflitto, che la didattica scientifica manteneva fuori dalla porta, è entrato dalla finestra della organizzazione scolastica e della pedagogia; ma è stato accuratamente lasciato all’esterno della “legge scientifica”, che è dura come prima.

  1. La matematica del conflitto

Eppure la scienza aveva già ammesso il conflitto al suo interno; lo si diceva prima riguardo la logica; nei primi anni del ‘900 c’erano stati i conflitti (almeno temporanei) durante le crisi della fisica e della matematica, crisi che avevano fatto sorgere teorie scientifiche del tutto in opposizione alle teorie scientifiche del passato glorioso e anche trionfalista.

Ma addirittura, dall’inizio del ‘900 è nata anche la matematica dei conflitti, benché a prima vista è una contraddizione in termini il mettere assieme la matematica, che è il mondo della precisione, con i conflitti, che è il regno della irrazionalità.5 Infatti così è sembrato per millenni, (benché già Pitagora avesse proclamato che “Tutto è numero”).

La contraddizione non è apparsa insuperabile ad un giovane quacchero, Lewis F. Richardson, il cui fratello era morto in guerra, e che, come obiettore di coscienza, lavorava in una infermeria della I guerra mondiale. Egli era un fisico, che si interessava professionalmente di meteorologia: un campo di fenomeni quanto mai complessi e apparentemente imprevedibili. Ma lui sapeva che anche la metereologia era soggetta ad una formalizzazione matematica. Con questa idea guida, Richardson propose per primo una formalizzazione della corsa agli armamenti e, in generale, dei fenomeni competitivi.

L’idea è semplice; invece di considerare una sola equazione differenziale alla volta, egli ha accoppiato due equazioni differenziali (o anche, due equazione a differenze finite); in modo che gli aumenti o le decrescite della variabile della prima equazione differenziale, dipendessero dagli aumenti o dalle decrescite dell’altra variabile, quella della seconda equazione differenziale.

dx/dt = ky – ax + g;……………dy/dt = lx – by + h

Che dicono queste equazioni? La prima dice che il primo Paese aumenta i suoi armamenti x a causa degli armamenti y del Paese confinante, salvo essere limitato dall’aver già raggiunto un livello molto alto e dall’avere stimoli o limiti (g) dovuti a ideali o a difficoltà (ad es. economiche).6 Analogamente per la seconda equazione.

Risolvere questo sistema è un po’ complicato; ma lo si semplifica se ci chiediamo quando avverrà che i due Paesi saranno soddisfatti della crescita già ottenuta e quindi non avranno più incrementi; cioè, se consideriamo nulle le variazioni dei primi membri. Così la matematica si riduce a quella delle equazioni di due rette; delle quali si può cercare il punto di incontro; quando esso c’è (comunque lontano), indica che la corsa agli armamenti dei due Paesi può trovare un punto d’incontro, quindi tutto il sistema è in equilibrio. Altrimenti i due Paesi sono condannati a correre all’infinito per accumulare spasmodicamente ulteriori quantità di armi distruttive.

Le pubblicazioni di Richardson (compreso un libro) ebbero un discreto successo; ma momentaneo. Lui stesso lasciò questo argomento di studio, per riprenderlo solo quando, negli ultimi anni ’30, un’altra guerra sembrò imminente.

E’ solo dopo la seconda guerra mondiale che questo settore di studi incominciò a svilupparsi, anche per la concomitante crescita della teoria dei giochi (competitivi). Questa era iniziata negli anni ’20 per opera di padri illustri: Emilio Borel e Janos Neumann. Dal 1944, data del famoso libro di Neumann e Morgenstein7, c’è stato un forte interesse degli economisti per questo nuovo argomento di studio; tanto che da un po’ di tempo è diventato materia corrente di studio universitario.

La teoria dei giochi include giochi a variabili anche continue (così è nata con Borel); ma i suoi problemi più interessanti concettualmente si hanno quando si usano variabili discrete. Nella sua forma più semplice un gioco è dato da otto numeri interi che vengono comparati tra loro per vedere qual è il più grande e il più piccolo; questa formalizzazione poteva nascere anche nella mente di Archimede. Eppure la sua capacità di sintesi è grande, perché, come ha sottolineato un altro quacchero famoso, A. Rapoport,8 la teoria dei giochi ha il concetto di strategia, il quale sintetizza un numero qualsiasi di mosse (le quali non vengono neanche prese in considerazioni dalla teoria). Quindi la teoria dei giochi è una teoria da capi o da generali, piuttosto che una teoria da subordinati o esecutori delle singole mosse (così come sono di solito le teorie matematiche).

Già la teoria dei giochi a due giocatori, ognuno dei quali ha solo due strategie possibili, può dare dei tremendi rompicapo, anche dal punto di vista filosofico, perché alcuni giochi danno luogo a veri e propri paradossi. I giochi più semplici sono i giochi a somma zero, là dove un giocatore vince tutto quello che perde l’avversario e solo quello. Per questi giochi Neumann ha dato un teorema (del minimax) che assicura sempre la strategia ottima.. Esso suggerisce ad ogni giocatore di scegliere il massimo delle sue vincite minime; quindi dà un criterio cautelativo, da mezzo bicchiere vuoto.

Ma i conflitti a somma zero sono poco interessanti, perché schiacciano la creatività di un gioco in un formalismo troppo schematico (tutto il mondo è racchiuso nel conflitto tra i due). Questa creatività riappare con i giochi a somma non zero, dove ambedue i giocatori possono anche vincere assieme o perdere assieme (ovviamente, grazie al coinvolgimento di terzi; che però nel gioco formale non fanno mosse e quindi, come giocatori, non esistono).

E’ da sottolineare che questa modifica rappresenta il cambiamento effettivo avvenuto nella storia delle guerre. Quando i Romani vincevano, le loro perdite erano trascurabili e i guadagni (il bottino) erano tutti a carico del perdente. Ora invece (seconda guerra mondiale, Jugoslavia) chi vince è costretto ad aiutare chi perde (per evitargli tracolli economici che trascinerebbero anche il vincitore); o addirittura chi vince, vince solo con il suo esercito, mentre la sua popolazione resta disastrata o distrutta (ad es. il Vietnam del Nord rispetto agli USA).

Per dare almeno un cenno di questo grande campo di ricerca, esaminiamo un suo gioco: il famosissimo dilemma del prigioniero, su cui c’è una ampia letteratura, sia matematica che filosofica.9 A causa di un delitto, la polizia arresta due delinquenti, che sa che quasi sicuramente l’hanno commesso; ma non ne ha le prove. Li pone in due celle separate, dove ognuno ha due strategie: confessare (C) o non confessare (NC). La matrice del gioco (ottenuta sovrapponendo le due matrici dei pagamenti per i due giocatori) è la seguente (i numeri contano solo come scala di preferenze).

Tab. 1: GIOCO DEL DILEMMA DEL PRIGIONIERO 

                    C                    NC

C                -5, -5              5, -10

NC            -10, 5               0, 0

Il caso (-5, -5) è il risultato della confessione di ambedue: indica la loro giusta condanna. Il caso (5, -10) significa che se il secondo non confessa e il primo sì, questi è premiato dalla polizia come “collaboratore”, mentre il tribunale raddoppia la giusta pena al secondo perché questi non ha confessato. Analogamente il caso (-10, 5). Ma se nessuno dei due confessa, la polizia, rimasta senza prove, li deve liberare: (0,0).

Ora, qualsiasi regola che scelga la strategia in modo cautelativo (e anche la regola matematica di Neumann) porta i due a scegliere C, cioè la coppia di strategie (C,C), che fa ottenere (-5, -5); quando invece è evidente che (NC,NC) è la coppia migliore, perché dà (0, 0). Ma quest’ultima strategia richiede la cooperazione tra i due, al di là di ogni dubbio o diffidenza. Da qui il conflitto di due razionalità opposte; quella cautelativa matematizzata, e quella cooperativa ma non basata su prove formali.

Questo gioco è eccezionale. Tutta la scienza tradizionale esclude i paradossi e le contraddizioni; cosicché non si ragiona mai su un conflitto di razionalità diverse. La teoria dei giochi invece lo può fare, mediante questo gioco particolare (e vari altri).10

Si noti che la stessa corsa agli armamenti, che Richardson aveva formalizzato con due equazioni differenziali, qui viene formalizzata con otto numeri; basta sostituire A (armarsi) a C, e NA (non armarsi) a NC. La struttura logica delle soluzioni di Richardson è la stessa di questo gioco: le nazioni si dissanguano per armarsi, a causa della diffidenza reciproca; benché sia evidente che, se cooperassero senza armarsi, ambedue ci guadagnerebbero molto.

Per di più, adesso il gioco rappresenta anche la strategia cooperativa ed il suo contrasto radicale con la strategia bellica. Come si vede, la semplificazione drastica del formalismo matematico non ha impoverito la rappresentazione della realtà, ma anzi l’ha arricchita. Ciò va contro l’aspettativa generale degli scienziati, e può essere elemento di riflessione per qualsiasi applicazione della matematica (ad es. la termodinamica e la chimica, la cui matematica è semplice, sono forse meno universali, nel loro campo di fenomeni, della meccanica, la cui matematica è sofisticata?).11

Ci sono poi altre formalizzazioni dei fenomeni conflittuali, ad es. la formalizzazione statistica dei conflitti mortali e guerre. Essa è molto istruttiva, perché mostra che le guerre si distribuiscono nella storia (e sotto tutti i parametri possibili) secondo una distribuzione che si chiama poissoniana, quella che è tipica dei fenomeni casuali: cioè (come sempre hanno detto i saggi) le guerre, viste sui tempi lunghi, sono fenomeni storici casuali!12 I professori di storia lo sanno?

Inoltre si può mostrare che anche la fisica ha la capacità di insegnare conflitti. Per brevità, su questo tema rimando ad altre pubblicazioni.13

  1. Il conflitto in logica: la sua didattica

Ma tutto ciò è forse difficile da insegnare? Forse richiede conoscenza tecniche superiori, o capacità intellettuali che solamente i più bravi della classe possono avere? La pubblicazione degli Insegnanti Nonviolenti dimostra che questo non è vero; tanto che riporta come E. Castelnuovo ha trovato una maniera di insegnare la poissoniana alle scuole elementari!

E se anche fosse vero che ciò che precede è difficile da insegnare, certamente non lo è il conflitto più interessante, quello che riguarda direttamente la nostra mente: il conflitto nella logica. Esso può essere insegnato appena si acquisti conoscenza della lingua che si usa; esso, anzi, favorisce quell’esercizio logico di sintassi che la scuola si sforza di insegnare attraverso una serie di regole specifiche.

Nel passato la logica classica ha dominato fino al punto da quasi escludere ogni altra logica. Ma, come si diceva dianzi, nel secolo XX la ricerca di logica matematica ha chiarito che esistono più logiche, che sono altrettanto importanti. Inoltre ha chiarito che la legge discriminante tra la logica classica e (quasi tutte) le altre logiche è quella della doppia negazione, piuttosto che quella del terzo escluso.14

Nel seguito sfrutteremo questo avanzamento. Basta notare che nei testi scientifici ci sono frasi doppiamente negate, le quali non sono equivalenti alle corrispondenti positive per mancanza di evidenza nella realtà (FDN); quindi appartengono alla logica non classica, perché per loro non vale la legge della doppia negazione. Ad esempio, la frase: “E’ impossibile il moto che non ha fine” (anche nel seguito le negazioni verranno sottolineate per facilitare il lettore nel riconoscerle nelle FDN) non è equivalente all’affermazione: “Ogni moto ha una fine”, perché questa seconda frase, essendo affermativa, è obbligata a dare a priori le prove operative del luogo e del momento finale della fine del moto; a causa dell’imprevedibile attrito ciò non è possibile.

Se un autore scientifico usa FDN, ciò significa che egli ragiona in logica non classica; la quale ovviamente introduce ad un mondo intellettuale del tutto differente da quello della logica classica.

Nei testi originali di Freud e di Marx si trovano molte FDN. In particolare si trovano in uno scritto molto breve e leggibile da chiunque, in cui Freud ha espresso il metodo della psicanalisi.15 Freud evoca la scena usuale della stanza dell’analista: il paziente, steso sul lettino, racconta i suoi sogni; egli dice ad es. che ha sognato di essere andato a trovare la madre; ma ad un certo punto dell’incontro, avvenuto in cucina, la madre l’ha fatto tanto arrabbiare che gli è venuta voglia di prendre un coltello sul tavolo e di ammazzarla; ma, aggiunge il paziente: “Però io non volevo ammazzare mia madre”. L’analista deve cogliere al volo questa negazione e, a sua volta, deve negare quella frase: “Non è vero che il paziente non voleva ammazzare la madre”. Infatti, dice Freud, la negazione linguistica è il segnale di un processo di negazione interiore (soppressione e rimozione) di un trauma, che ancora tormenta il paziente; e che, come tutte le cose inconsce, viene a galla solo quando il suo Io allenta la pressione oppressiva, in particolare nei sogni.

Quello che fa l’analista (negare la negazione del paziente) pone un inizio, un principio di quel metodo di indagine sul paziente che può risolvere il conflitto psichico; quindi un principio metodologico. (Oltre che sul lavoro del singolo analista sui sogni del singolo paziente, Freud ha teorizzato più in generale sui sogni di tutti i pazienti; allora il suo principio metodologico è espresso da un’altra FDN: Non è vero che i sogni non siano realtà).

Questa differenza tra logiche differenti è semplice, alla portata di tutti i livelli della didattica, anche della quinta elementare. Essa inoltre è utile per eliminare gli abusi di linguaggio (del tipo: “Non c’è nessuno”; che invece dovrebbe essere: “Non c’è alcuno”; oppure “Non mi hai dato niente!”; invece di “Non mi hai dato alcunché”), o a sottintendere pezzi importanti della frase. Ad es., Popper. “La scienza è fallibile [a causa di esperimenti negativi]”; Jonas: “L’etica della paura [del suicidio dell’umanità]”; in modo da avere una precisa corrispondenza tra pensiero e linguaggio, tale che la mente possa aver fiducia nelle parole che esprimono il suo pensiero.

Poi si può notare che in logica c’è un conflitto ancor più ramificato; ad esempio esaminare (nel liceo) la differenza tra implicazione materiale e implicazione intuitiva; e poi studiare i rimedi che si possono portare (secondo le diverse logiche). Allora finalmente lo studente potrebbe affrontare la logica non in quella maniera scorretta che viene suggerita dalla filosofia mediante qualche idea del sillogismo aristotelico e poi con la fumosa dialettica di Hegel (o con quella tutta da riconoscere di Marx; si ricordi che su diamat = materialismo dialettico, si è fondato un regime di potere, l’URSS, che ha dominato le menti delle persone di metà del mondo per il periodo di tre generazioni).

Ancor più in generale, è chiaro che se si ragiona con FDN, non si può ragionare deduttivamente da poche frasi prese come assiomi certi. Ogni FDN (vedasi ad esempio quella del moto perpetuo, o quelle di Freud), indicano una ricerca, non una sicurezza; una induzione, non una deduzione. Induzione a che fine? A quello di risolvere un grande problema; che nella termodinamica, dove l’impossibilità del moto perpetuo è servita a fondare quasi tutta al teoria, è “Non è vero che il calore non è lavoro”; e nella meccanica che ha usato lo stesso principio, è il problema di conoscere le caratteristiche principali del movimento; in Freud è quale sia il trauma del paziente; e in Marx il problema è come superare storicamente il capitalismo. Ecco che allora appare una novità ancor più importante: il conflitto nella logica è la espressione più precisa di un conflitto più generale, quello tra due tipi di organizzazione di una teoria: o una organizzazione deduttiva, che ricava tutte le verità dalla verità delle poche proposizioni iniziali (principi-assiomi), o una organizzazione che, in maniera induttiva, cerca e trova un nuovo metodo che risolva un dato problema.

In definitiva, la organizzazione della teoria non è più solo quella deduttiva indicata da Aristotele, ma è anche quella induttiva. Allora capiamo che è molto importante chiarire che esiste un conflitto in logica, perché altrimenti non saremo mai padroni della nostra mente, né sapremmo in quale organizzazione del pensiero ci troviamo. In particolare, stando attenti alla presenza di FDN, si ha un nuovo metodo di analisi logica, che permette di decidere sia se l’autore ragioni o no con precisione logica in logica non classica, sia che tipo di ragionamento egli segua, sia che organizzazione egli abbia dato alla sua teoria.

  1. Il conflitto nella didattica della fisica e nella didattica della chimica

Ma esistono conflitti all’interno delle scienze della natura?

Consideriamo la scienza che si insegna nelle scuole superiori. Essa cerca giustamente di qualificarsi al livello di teorie scientifiche; infatti, che di più educativo e formativo dell’insegnare a quali altezze intellettuali è giunta la mente umana, partendo dai dati di fatto sperimentali?

Queste teorie contengono in maniera essenziale la matematica. Nelle scuole giustamente si insegna almeno quel minimo livello di matematica col quale poter introdurre le teorie scientifiche più importante (anche se non le più recenti). Ad es., la didattica della fisica insegna l’ottica geometrica; questa richiede la conoscenza di quasi solamente la geometria euclidea, che si impara sin dalla scuola elementare. Si noti che questa geometria, giustappunto per lo spirito dei greci antichi, non usa l’infinito, ma solo l’illimitato; ovvero l’infinito solo potenziale (cioè l’infinito che è approssimabile ma mai è raggiungibile). E’ vero che nell’ottica la formula delle lenti sottili può portare l’immagine all’infinito; ma qui si tratta di un infinito virtuale, perché riguarda non l’oggetto materiale o la lente, ma l’immagine che è immateriale.

Invece poi la meccanica classica richiede concetti matematici più avanzati; chi fa il liceo scientifico deve imparare i concetti (approssimativi) di derivata e integrale. Essi sono nati mediante gli infinitesimi dx e dt; che sono numeri definiti come inferiori a qualsiasi altro numero superiore a 0; ovvero, come l’inverso del numero infinito. Quindi questo è l’infinito che è un numero come qualsiasi altro; o è il punto finale di una retta, anche se nessuno è mai arrivato là).16 In definitiva, nell’insegnamento della fisica si nasconde un conflitto sul tipo di matematica usata: o la matematica (solo finita o) basata sul solo infinito potenziale, o la matematica basata sull’infinito in atto.

Ovviamente, nelle varie teorie fisiche questi due tipi di infinito danno luogo a concetti molto diversi. Ad esempio, in meccanica è essenziale il tempo come variabile continua, con cui si calcolano le derivate e gli integrali dell’analisi infinitesimale; mentre invece la termodinamica, che non ha bisogno di infinitesimi e di infiniti, usa una matematica elementare: il suo tempo è solo quello dualistico del prima-dopo una trasformazione.

Così pure il concetto di spazio comporta un analogo conflitto; tra il concetto che vale nella ottica e nella meccanica, cioè quello che riguarda l’infinito universo, matematizzato con tre assi cartesiani; e il concetto di spazio della termodinamica, che è tutto diverso: è racchiuso in un volume di misura data (sempre finita).

Ma chi spiega ciò allo studente? Gli si insegnano le teorie differenti, e differentemente fondate, solo per i loro risultati e presentando i loro concetti teorici come se ogni volta fossero calati dal cielo.

Ma allora ci accorgiamo che con la precedente analisi abbiamo individuato due conflitti che sono nei fondamenti di una teoria scientifica: quello sul tipo di infinito (o potenziale o in atto) e quello sulla organizzazione della teoria; questo secondo è equivalente a quello su due tipi di logica: o classica per la deduttività, o non classica (con le FDN) per l’induzione. Questi due conflitti possono essere visti in maniera più concreta nelle due grandezze fisiche che di solito sono basilari, tempo e spazio: il tempo continuo o quello prima/dopo; o lo spazio infinito, o quello confinato.

In sintesi:

1° i fondamenti di una teoria scientifica hanno sempre due conflitti, non sovrapponibili tra loro.

2° Ogni conflitto è dovuto ad un concetto filosofico – o l’infinito, o l’organizzazione – che poi, nella storia della scienza, è stato oggettivato e formalizzato mediante una specifica teoria scientifica: rispettivamente, la matematica (dell’infinito) e la logica matematica.

3° Ogni conflitto nasce perché ognuno dei due concetti filosofici è suddiviso in due scelte possibili:

– l’infinito in atto (IA) o potenziale (IP), che sono alla base rispettivamente della matematica classica e della matematica costruttiva;

– l’organizzazione assiomatica (OA) o problematica (OP), basate rispettivamente sulla logica classica e sulla logica non classica.

4° In ogni conflitto, le due scelte sono incompatibili tra loro e le teorie con scelte differenti sono tra loro incommensurabili.

5° Complessivamente, tutte le teorie scientifiche esprimono, con le loro scelte, quattro modelli di teoria scientifica, che seguono quattro tipi di razionalità scientifiche, separati dalle loro incommensurabilità.

DRAGO_FIG10001

Tab. 2: I FONDAMENTI DELLA SCIENZA

Infinito Infinito in Atto Matematica Classica
Infinito Potenziale Matematica Costruttiva
Organizzazione Organizzazione per Assiomi Logica Classica
Organizzazione su un Problema Logica non classica

In definitiva, questa chiarificazione comporta che l’insegnamento di una teoria scientifica chiarisca i due conflitti fondamentali che stanno alla sua base.

Da questo punto di vista, come risulta l’attuale insegnamento della Fisica nelle scuole superiori? Sorprendentemente, appare a prima vista che le teorie fisiche da insegnare sono quattro: ottica geometrica, meccanica, termodinamica, elettromagnetismo. Sono esse ordinabili secondo le quattro coppie di scelte sui due conflitti? Si!

Tab. 3: I QUATTRO MODELLI DI TEORIA SCIENTIFICA E LE QUATTRO TEORIE FISICHE

OA

OP

IA

Meccanica di Newton

Elettricità e Magnetismo

traiettoria, linea di forza

IP

Ottica geometrica

Termodi-namica

distanze, processi

spaz. assoluto, sistema di rif.

campo, sistema

(In corsivo sono indicate le grandezze fisiche che più rappresentano una particolare scelta compiuta dalle teorie fisiche di quella riga o quella colonna.

In altri termini: i didatti della fisica sono stati così sagaci che, tra le tante teorie fisiche che potevano scegliere di insegnare, hanno scelto proprio quelle che rappresentano i quattro modelli di teoria scientifica, cioè tutte le coppie di scelte possibili sui suddetti conflitti. Quindi questi didatti, attraverso le loro teorie, di fatto hanno intuito i fondamenti della loro teoria scienza.17 Ma non se ne sono accorti; perciò non dichiarano la loro scoperta agli studenti. Anzi, si sforzano di presentare la fisica come unitaria, nonostante (come indica la doppia freccia nella tabella) l’accostamento di meccanica e termodinamica strida, a causa della loro incommensurabilità.

Se si esamina la didattica della chimica, si nota che essa ha sofferto il conflitto sul tipo di organizzazione. La didattica tradizionale considerava la chimica per come essa era nata: basata sul problema di quali siano gli elementi costitutivi della materia, da trovare induttivamente, mediante l’esame della miriade di tutte le reazioni possibili tra le sostanze; cioè è nata come teoria OP. Infatti essa ha usato sistematicamente le FDN; ad es., “La materia non è divisibile al non finito”; Lavoisier e Dalton: “Chiameremo elemento quella sostanza che ancora non siamo riusciti a scomporre”.

Invece, da qualche decennio, per essere più rapidi nell’avvicinare la chimica del XX secolo (quantistica), quasi sempre si insegna chimica assiomaticamente: si illustra l’atomo come se fosse una pallina (immagine impossibile, secondo la meccanica quantistica!) e poi si dà la classificazione dei suoi livelli atomici, per così presentare deduttivamente tutti gli elementi possibili. Questo conflitto tra OP e OA nella didattica è rimasto vivo, perché c’è anche un movimento contrario, per tornare alla didattica precedente. Ma senza che il conflitto sia stato indicato agli studenti.

Diversa è la situazione dell’insegnamento universitario di chimica. Lì i chimici didatti sono stati anche loro sagaci nel saper individuare quattro teorie che, di fatto, indicano i conflitti fondamentali e le articolazioni delle possibili scelte.18 Anche qui, però, non se ne sono accorti e non lo dicono agli studenti.

Tab. 4: I QUATTRO MODELLI DI TEORIA SCIENTIFICA E LE QUATTRO TEORIE CHIMICHE

IA

IP

OA

Chimica Quantistica

Chimica Fisica

OP

Cinetica Chimica

Chimica Classica

7. La didattica della matematica solo apparentemente è senza conflitti

Purtroppo la didattica scientifica che manca all’appello è quella della matematica, la didattica scientifica che più di tutte dovrebbe dare le direzioni alla cultura scientifica; anzi, oggi essa è la didattica più oscura. Certo, questa didattica deve fare anche da supporto alle altre didattiche scientifiche; q quindi deve occuparsi di molte teorie. Ma ciò non le dovrebbe impedire di insegnare che cosa è una teoria matematica in tutta generalità, cioè secondo i quattro modelli di teoria scientifica. Invece questa didattica si è accontentata del primo modello di teoria scientifica che è nato nella storia della scienza, quello euclideo; e poi ha cercato semplicemente di attenersi sempre a quello; sia imitandone, ogni volta che è stato possibile, la sua OA, come se fosse l’unica organizzazione; sia riferendosi il più possibile al finito, così come fa la n geometria euclidea con riga e compasso.

Sappiamo bene che la prima operazione è stata possibile fino ad oggi, perché nella storia non c’è stato uno scienziato autorevole che abbia proposto, mediante una nuova teoria importante, una teoria matematica esattamente in una OP. In realtà, ci sono stati: Lobacevsky, che con questa organizzazione ha proposto proprio la prima geometria non euclidea;19 e Kolmogoroff, che così ha proposto per la prima volta la formalizzazione della logica non classica, l’intuizionista.20 Ma ambedue non erano coscienti di questa loro novità, o almeno non l’hanno dichiarata; perciò è passata inosservata agli altri scienziati (oltre al fatto che anche i loro lavori sono stati quasi ignorati dagli storici).

La seconda operazione è stata più tormentata. Perché quando i matematici moderni sono arrivati ad inventare la analisi infinitesimale, che usava l’IA, giustamente si sono entusiasmati dei risultati strabilianti che ottenevano con essa. Ma allora è nato un conflitto: questa matematica era in opposizione con la matematica di riga e compasso, essenzialmente, finita. Il conflitto si è esteso alla didattica: come insegnare la matematica, restando legati al finitismo di riga e compasso, pur sapendo che quella avanzata è l’analisi infinitesimale? D’altra parte, come insegnare solo quest’ultima, che ha avuto fondamenti equivoci per due secoli e che comunque impone di scegliere l’IA, che nelle scuole superiori è chiaramente un concetto difficile da far capire agli studenti? Anzi, esso è impresentabile come concetto basilare della scienza, che pretende di essere galileianamente sperimentale, in opposizione all’apriorismo dell’aristotelismo e all’idealismo di Platone.

Qui sta tutta la storica irresolutezza della didattica della matematica; che alla fine va a insegnare un misto di concetti, spezzoni di teorie, anche una teoria, la geometria euclidea, che però è antiquata, rispetto alle teorie della modernità.21 Questo tipo di didattica può essere rappresentato, almeno fino agli anni dello Sputnik, dalla Fig. 2. Ogni freccia di una teoria indica, col punto di partenza, le scelte effettive di quella teoria, e, con il punto di arrivo, le scelte che appaiono allo studente. Si notino le tante frecce, ognuna indicante la equivocità della didattica sui fondamenti di quella teoria, e si noti l’incrocio turbinoso delle frecce. E’ chiaro che la tentazione dell’insegnante di matematica è di fare ignorare che nella didattica della matematica c’è un grande problema di fondamenti.

Questa oscurità della didattica della matematica esiste perché i matematici, ritenendo che la loro scienza è esente (dal rapporto con la realtà concreta e quindi anche) dai conflitti, la concepiscono idealmente, come un mondo “in pace”, dove tutto ha il suo posto o lo avrà sicuramente tra breve. Questa loro opinione impedisce una chiarificazione della didattica, che è molto semplice e a basso costo didattico: insegnare l’algebra booleana, che è una struttura matematica molto attraente, perché può essere vista come teoria: dei circuiti elettrici, delle leggi della logica, degli insiemi (senza necessità di vederli infiniti), dei reticoli, dei numeri a base binaria, ormai molto usati; e al liceo un esempio molto semplice di struttura algebrica, perché è simmetria ed ha il merito di introdurre a definire i numeri razionali come campo.

DRAGO_FIG10002

Essa darebbe una chiara teoria IP, perché ivi tutto è finito, e OP, perché nelle leggi della logica possono essere poste (come all’origine storica) come risultato della ricerca sul problema delle regole del ragionamento. Al suo confronto, sarebbe facile comprendere le scelte di ogni altra teoria insegnata. E la didattica così potrebbe svolgere un chiaro percorso didattico sui fondamenti della matematica tutta.

7. Conflitto e sua conciliazione per saper lavorare dentro il pluralismo

A mio parere, se non si affronta la problematica dei fondamenti, l’insegnamento scientifico resta subordinato alla cultura dei mass media (a incominciare dalle riviste divulgative, per finire alle trasmissioni TV); che è più attraente non solo perché è più facile, ma anche perché è conflittuale in tutto, anche nell’informazione scientifica. Alla cultura scolastica anche scientifica resta il ruolo di concedere quel pezzo di carta che poi permette di arrivare ad una professione remunerata (come il ruolo degli esami che nella Cina antica permettevano di diventare mandarino).

In particolare, si formano esecutori incoscienti del senso culturale delle operazioni mentali che essi eseguono; si inculca l’assenso all’ipse dixit. In altri termini, cioè si arriva ad una specie di tradimento della scientificità galileiana, oltre che della fiducia degli studenti; i quali si aspetterebbero di essere trattati da persone razionali e desiderose, da persone di lì a poco adulte, capaci di assumersi le loro responsabilità di saper vivere in pieno la vita culturale della società moderna.

Ma, mi sembra di sentire una obiezione: “Ma tutti questi conflitti non fanno altro che confondere le idee agli studenti.”

Certamente non si può imparare la critica dei concetti, se prima quei concetti non sono stati appresi. Quindi non si possono studiare i fondamenti di una casa se non si sa qual è la casa che si sta esaminando. Ma una volta che la costruzione didattica dei concetti scientifici è finita, è autoritario lasciare agli studenti la coscienza del semplice muratore, che ha messo assieme i pezzi di quella casa, senza fargli sapere a che progetto essa corrispondeva e perché le linee risultanti sono state concepite in quella maniera. Qui c’è tutta la differenza tra esecutori e persone coscienti. Non credo che ci sia una valida esigenza sociale che gli studenti in massa debbano avere una mentalità solo esecutrice; se non l’esigenza del “grande fratello” di Orwell.

Né vale la scusante che lo studente può ricostruirsi da solo quella che è la problematica di fondo, sia nella logica che nei fondamenti. E’ come dire che mangiando torte, alla fine si riesce ad imparare la ricetta con cui esse sono state fatte. La via diretta è piuttosto quella di una didattica che sa presentare e affrontare gli argomenti per i loro contenuti culturali principali, non per gli aspetti laterali, quelli più tecnici e ripetitivi. Certo, qui un insegnante avrebbe ragione a ricordare che l’Università non dà la preparazione a tutto questo; perciò, nella attuale latitanza dei programmi ministeriali e della preparazione universitaria, l’insegnante dovrebbe assumersi tutta la responsabilità di innovare autonomamente la didattica. Ma io credo che, se l’insegnante aspira minimamente ad essere una persona di cultura, e non un impiegato esecutivo che semplicemente si fa gradire dagli studenti, certamente si impegnerà in quell’attività che lo riabilita come educatore, ai suoi occhi e agli occhi degli studenti.

Certo, l’insegnante dovrebbe scendere dal piacevole e comodo dislivello che gli permette di parlare ex cathedra (sia pure condizionato dal libro di testo); sui fondamenti dovrebbe diventare un uomo di cultura, che sa indirizzare gli studenti dentro una realtà conflittuale. Ma che cosa dovrebbe desiderare di più un insegnante se non proprio questo? E che dovrebbero chiedere di più i giovani, se non essere aiutati nella loro formazione umana e culturale, che passa essenzialmente attraverso molti conflitti? Tanto più ciò vale per quegli studenti che poi all’Università proseguiranno nello studio di materie scientifiche, dove, a ragion veduta della formazione alla professione, il tecnicismo prevarrà.

E’ da notare che l’attuale situazione da superare è stata creata da operazioni culturali avvenute nel passato e oggi non più rimesse in discussione, nonostante non siano di onore per la attuale cultura. E’ stata la Rivoluzione francese che, sin dalla Éncyclopédie, ha sostenuto il primato della ragione, al fine positivo di aver la forza d’animo e la forza sociale di abbattere i poteri assoluti che dominavano la società europea. La lotta contro i giganti che i sans culotte (detto modernamente: “i senza potere”) dovevano fare poteva basarsi solo sulla ragione; perciò essi hanno così tanto sostenuto il primato della ragione da farne un assoluto e una Dea.

La successiva restaurazione, che non poteva tornare esattamente alla situazione precedente, prese in contropiede il movimento innovatore: ne accettò il primato della ragione e della scienza, ma lo subordinò al potere sociale esistente. L’aver fatto gli studi all’Università per entrare sia nella ricerca sia nella carriera dell’Università, le riviste che pubblicano articoli di ricerca solo se esaminati da altri colleghi autorevoli, la società degli scienziati, sono tutte caratteristiche che sono nate in quel tempo e che hanno formato quella si autodefiniva la “comunità scientifica”.22 Cosicché, mentre prima i gestori della ragione illuministica erano tutte le persone, compresi i popolani; dopo, i gestori della ragione sono state le comunità degli scienziati; cioè solo le persone autolegittimantesi in gruppo ed autorizzate dal potere sociale, il quale (anche se democratico) dava a quella ragione le direzioni, i limiti e i vincoli. Il tutto all’interno dell’idea che la ragione è unica per tutti (così come aveva creduto la rivoluzione francese, essendo all’inizio del suo uso sociale).

Né poi il sorgere del movimento operaio ha cambiato la situazione. Sia perché esso si è basato più che sulla ragione individuale, sulla ideologia collettiva perché solo essa era scientifica, non quella individuale. Sia perché, Engels, convinto che il progresso avrebbe portato necessariamente alla vittoria del proletariato, ha determinato un’alleanza del movimento operaio con l’ala radicale della borghesia, quella che anticipava quel progresso.23 Al centro di questo accordo, c’era proprio la unicità della ragione. Poi la seconda Internazionale socialdemocratica stabilì che, mentre le scienze sociali erano internamente divise, perché lì c’era l’alternativa scientifica del marxismo, invece la scienza della natura era unica, per proletari e capitalisti. Non si accorse che così la scientificità della ideologia operaia andava a confondersi con una generica scientificità, sulla quale l’accademia poteva giovare a piacimento.

Poi la negli anni ’50 USA e URSS, impegnandosi nella comune gara economica-tecnologica ribadirono la unicità della scienza. Che negli anni ’60 fu contestata dagli studenti, che gridarono “La scienza non è neutrale!”; senza però riuscire ad avere conseguenze istituzionali.

Quindi ci sono precise circostanze storiche che hanno fatto nascere il dogma della unicità della ragione; il quale è rimasto e oggi si mantiene perché non ci sono state mai grosse forze sociali che lo abbiano messo in discussione. Troppi politici oggi preferiscono l’irrazionalismo o il relativismo; e troppi filosofi preferiscono fare la filosofia dei sentimenti.

Fortunatamente da qualche decennio è sorto un movimento ecologico che ha chiesto un progresso diverso, tale che darci una migliore qualità della vita piuttosto che una maggior quantità di vita (consumistica). Nella gente si è diffusa la coscienza che si può e si deve “fermare il progresso scientifico”, come quello delle centrali nucleari (referendum negativi in molti Paesi, a incominciare da quello dell’Austria nel 1976). Si è anche capito che questa nuova politica discende da una innovazione politica radicale del secolo XX: la nascita di un metodo nonviolento nel risolvere i conflitti: prima Gandhi con la liberazione dell’India e poi le liberazioni nonviolente dei popoli dell’Est nel 1989 hanno dimostrato che esiste un’altra razionalità nel risolvere le guerre; una razionalità che è diversa da quella scientifica tecnologica che ha portato alla folle corsa alle armi (ad es. nucleari, ma anche batteriologiche e metereologiche) che minaccia cupamente il suicidio dell’umanità.

D’altronde non era difficile capire che ci sono più razionalità sulla base della esperienza generale: la ragione greca non aveva mai messo in conto la razionalità femminile, che certamente non è quella maschile. E noi l’abbiamo visto in precedenza (par. 5): non la filosofia o la ideologia politica, ma la logica matematica porta a differenti razionalità, formalizzate rigorosamente in logiche diverse e incompatibili tra loro. Le varie scienze pure: la razionalità della termodinamica non è quella della meccanica di Newton.

Ma allora come si sceglie sulla scienza? Lo abbiamo visto considerando i quattro modelli di teoria scientifica. E quale è il risultato di queste scelte? Non l’irrazionalismo, o l’indifferentismo, o la vita dei soli sensi; ma il pluralismo di un numero preciso di razionalità, in accordo con quella enorme esperienza storica che è stata la scienza occidentale; esperienza che, una volta conosciuta nei suoi fondamenti, resta come guida sapienziale per l’umanità.

Ma allora il problema vero non è se la ragione sia unica, ma il suo legame con l’etica (delle scelte). In Occidente la scienza ha sempre subordinato l’etica, invitando la gente a “saper convivere con il progresso” senza resistergli; cioè, ad adeguarsi ad esso anche se comportava profondi cambiamenti di modelli di vita (si pensi ad esempio a come l’ingresso della automobile ha cambiato la vita della gente: così tanto che il suo possesso anticipa e precostituisce il formare la propria famiglia; oppure si pensi a come ha cambiato la mente della gente lo stare quattro ore al giorno (media europea) davanti alla TV, o l’avere un cellulare per passare un gran parte della vita per comunicare con persone lontani; e per dire che cosa?). La giustificazione presentata alla gente che essa deve accettare di buon grado il “costo umano del progresso”, anche se in Italia ci sono 5.000 morti l’anno per incidenti stradali e che ci sono le morti programmate (statisticamente) a causa dell’uso della radioattività in mille applicazioni sociali (ad es. impedire che le patate diano getti). Il tutto giustificato con il fatto che la ragione è unica, quindi la scienza è unica, quindi non ci sono alternative a questo progresso tecnologico e sociale.

Allora il salto culturale che è da fare può essere rappresentato dalla seguente tabella, dove si vedono i due rapporti scienza-etica che si confrontano. Il contrasto dei due atteggiamenti sta tutto sulla collocazione dell’unità: se su una costruzione intellettuale, incomprensibile dai fruitori e incontrollabile dalla società; oppure sul genere umano, e quindi la solidarietà con le persone.

Tab. 3: DUE ATTEGGIAMENTI SU SCIENZA ED ETICA: L’OCCIDENTALE E IL NONVIOLENTO

Occidentale

Nonviolento

SCIENZA

Unità della scienza (tra teorie scientifiche non esistono conflitti irriducibili): “La” scienza Le teorie scientifiche hanno tra loro conflitti che sono irriducibili

CONFLITTO

Ci sono conflitti umani che non sono risolvibili senza distruggere una delle parti E’ impossibile che un qualsiasi conflitto non sia risolubile, data la unità del genere umano

1 Questo punto è stato messo in luce molto bene da A. Koyré: Dal mondo chiuso all’universo infinito, Feltrinelli, Milano, 1970.

2 In proposito è utile l’articolo di P. Cerreta e A. Drago: “50 anni di didattica della fisica, Il tempo nella scuola, 7 (1992) aprile, 14-17.

3 A. Drago e G. Forni: “A chi serve l’insiemistica?” Scuola Documenti, n.14 (1978), 40-48.

4 Anche negli USA l’insiemistica fu di moda. Contro di essa scrisse M. Kline: “Why John does not add”.

5 Una rassegna di questi argomenti, tale da essere presentata agli studenti delle scuole superiori, è in Insegnanti nonviolenti: Matematica della guerra, Ed. Gruppo Abele, Torino, 1987. Per gli insegnanti è utile A. Drago: “La matematica è senza conflitti? Matematica dei conflitti e conflitti in matematica”, Atti Fond. Ronchi, 55 (2000) 243-259.

6 Note bibliografiche su Richardson e alcuni articoli originali sul tema sono in J. R. Newman (ed.): The World of Mathematics, Schuster, New York, 1956, vol.II, 1238-1265. Una biografia scientifica di Richardson: O.M: Ashford: Prophet or Professor?, Hilger, Bristol, 1985.

7 J. von Neumann, O. Morgenstein: Theory of games and economic behavior, Princeton U. P. . I cinquant’anni della nascita di questa teoria sono stati celebrati con l’assegnazione del premio Nobel per l’economia.

8 Di A. Rapoport è classico: Strategia e Coscienza, Bompiani, Milano, 1963. I libro illustra la teoria dei giochi ad un livello più intelligente ed approfondito di quello dei tanti libretti in libreria con questo titolo; ed è anche una applicazione del gioco più famoso, il dilemma del prigioniero, ai rapporti USA-URSS.

9 Questo gioco ha formalizzato il contenuto di una novella (a rigore, la teoria dovrebbe introdurre il gioco giustificando la scala di preferenze rappresentata poi dalla tabella; io qui semplifico, riferendomi ai significati intuitivi che la novella fa associare ai numeri).

10 In letteratura questi paradossi vengono dati per risolti mediante la teoria degli equilibri di Nash. Ma, come lo stesso teorema di Minimax, essa è basata su operazioni non costruttive, che cioè si appellano all’infinito in atto. Vedasi il mio: “Finite game theory according to constructive, Weyl’s elementary, and set-theoretical mathematics”, Atti Fond. Ronchi, 57 (2002) 421-436.

11 A Drago, G. Toraldo: “Il dualismo discreto-continuo nella storia delle teorie matematiche della guerra”, in S. D’Agostino, S. Petruccioli (eds): Atti V Conv, Naz. Storia Fisica, Acc. dei XL, Roma, 1985, 375-382.

12 Un articolo originale è riportato in J. R. Newman: op. cit.. In A. Drago: “La matematica…,”, op. cit., c’è una breve illustrazione. In Insegnanti nonviolenti: op. cit., è riportato un altro caso interessante di statistica dei conflitti.

13 A. Drago e A. Pirolo: “Urto, teorie meccaniche e nonviolenza”, in A. Drago, M. Soccio (ed.): Per un modello di difesa nonviolento, Editoria Univ, Venezia, 1995, 192-208. A Drago e A. Sasso: “Entropia e difesa”, in G. Stefani (ed.): Una strategia di pace: La difesa popolare nonviolento, Fuorithema, Bologna, 1993, 153-162; A. Drago: “Modelli logici, matematici e fisici dei conflitti e delle loro soluzioni”, in M. Zucchetti (ed.): Contro le nuove guerre. Scienziati e scienziate contro la guerra, Odradek, Roma, 2000, 73-81.

14 D. Prawitz and P.-E. Malmnaess: “A survey of some connections between classical, intuitionistic and minimal logic”, in A. Schmidt and H. Schuette (eds.): Contributions to Mathematical Logic, North-Holland, Amsterdam, 1968, 215-229; J.B. Grize: “Logique” in J. Piaget (ed.): Logique et connaissance scientifique, Éncyclopédie de la Pléiade, Gallimard, Paris, 1970, 135-288, pp. 206-210; M. Dummett: Elements of Intuitionism, Claredon, Oxford, 1977. Una mia illustrazione è: “Il ruolo della logica non classica nei fondamenti e nella didattica della scienza”, A. Repola Boatto (ed.): Pensiero scientifico, Fondamenti ed Epistemologia, IRRSAE Marche, Ancona, 1997, 191-209 e “Traduzione, doppia negazione ed ermeneutica”, Studium, 99 (2003) 769-780.

15 S. Freud: “La negazione” (1925), in Opere, Boringhieri, 1980, vol. X; per una interpretazione di questo scritto mediante le doppie negazioni, si veda A. Drago e E. Zerbino: “Sull’interpretazione metodologica del discorso freudiano”, Riv. Psicol., Neurol. e Psichiatria, 57 (1996) 539-566.

16 Si noti che la successiva fondazione dell’analisi, data da Cauchy e Weierstrass, quella di definire il limite mediante la tecnica dell’ε-δ, non ha eliminato affatto l’infinito in atto; vedasi E.G. Kogbetlianz: Fundamentals of Mathematics from an Advanced Point of View, New York : Gordon & Breach, 1968, App. II.

17 Per maggiori particolari si veda il mio articolo: “Lo schema paradigmatico della didattica della Fisica: la ricerca di un’unità tra quattro teorie”, Giornale di Fisica, 45 n. 3 (2004) 173-191.

18 Maggiori particolari nell’articolo di C. Bauer e mio: “Didattica della chimica e fondamenti della scienza”, Atti XI Conv. Naz. Storia e Fondamenti della Chimica, Acc. Naz. Sci. XL, 123, vol. 29, 2005, Torino, 2005, 353-364.

19 Vedansi i lavori S. Cicenia e A. Drago: “Didattica delle geometrie non euclidee: quali proposte?”, Period. Matem., 63 (1987) 23-42; “La logica non classica nella geometria non euclidea di Lobacevskij”, B. Rizzi et al. (eds.): Matematica moderna e insegnamento, Ed. Luciani, Roma, 1993, 434-442; “The organizational structures of geometry in Euclid, L. Carnot and Lobachevsky. An analysis of Lobachevsky’ s works”, In Memoriam N. I. Lobachevskii, 3, pt. 2 (1995) 116-124; La Teoria delle Parallele secondo Lobacevskij (con inclusa la traduzione e cura di I. N. Lobacevskij: Untersuchungen der Theorien der Parallelellineen, Finkl, Berlino, 1840), Danilo, Napoli, 1996,

20 A. Drago: “A.N. Kolmogoroff and the Relevance of the Double Negation Law in Science”, in G. Sica (ed.): Essays on the Foundations of Mathematics and Logic, Polimetrica, Milano, 2005, 57-81.

21 Per maggiori particolari vedasi il mio articolo: “La Tradizionale didattica della Matematica tra astrattismo e strumentalismo”, in G. Ferrillo (ed.): Atti convegno sulla didattica delle scienze, Aversa, 2008 (in stampa).

22 Si veda la eccellente descrizione data da J. Ben-David: Il ruolo dello scienziato nella società, Il Mulino, Bologna, 1974.

23 Marx, che era stipendiato da Engels, non fu d’accordo ed ebbe il coraggio di scriverlo ne La critica del programma di Gotha (1875), Ed. Riuniti, 1974 (Gotha era la città dove c’era il congresso della socialdemocrazia che avrebbe deciso questa alleanza).

INSEGNAMENTO DELLA FISICA: una riflessione sulle possibilità educative e di insegnamento della fisica nelle intersezioni Scuola Media-Scuola Superiore, Biennio-Triennio; del dott. Piero Pistoia, docente di ruolo ordinario in fisica

CURRICULUM DI PIERO PISTOIA, al termine del post

 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Questo articolo è piaciuto al blog Briciolanellatte come comunicato il 4-5-2015 da WordPress all’Amministratore con una mail 

::::::::::::::::::::::::::::::::::::::::::::::

Premessa- Riassunto

PARTE PRIMA

FINALITA’ EDUCATIVE INDIVIDUABILI NEL BIENNIO DELLA SCUOLA SUPERIORE

PARTE SECONDA

STATO DELLO SVILUPPO COGNITIVO AL BIENNIO SUPERIORE: “ZONE DI CONFINE” ED “AREA DI SVILUPPO” DELL’APPRENDIMENTO

Bibliografia

Leggi in pdf:

INS. FISICA_BIENNIO_INTERFACCE_parti 1-2

:::::::::::::::::::::::::::::::::::::::::::::::::::::

PARTE TERZA

INSEGNAMENTO DELLA FISICA NEL QUADRO PIU’ VASTO DELLA PREPARAZIONE DI UN ITINERARIO CURRICOLARE:  RICERCA MOTIVATA, RAPPORTO STRUTTURA DISCIPLINARE  – PROBLEMI SOCIALI, INTERDISCIPLINARITA’

Bibliografia

Leggi in pdf:

insegnamento-della-fisica-31 (9)

insegnamento-della-fisica-31 (1)


:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

PARTE QUARTA

ALCUNI ASPETTI DELLA DIDATTICA SCIENTIFICA; NEI LORO RIFLESSI EPISTEMOLOGICI

Bibliografia

PARTE QUINTA

UNA PROPOSTA MODULARE PER INSEGNARE FISICA NELLA ZONA DI FRONTIERA (METODO DI APPRENDIMENTO)

Bibliografia

Leggi in pdf:

INS_FISICA_BIENNIO_INTERFACCE_parti 4-5 in pdf