LE ULTIME SCULTURE DI R. MARMELLI IN ARENARIA: Guerriero con Elmo e Cariatide; Guerriero con elmo a cavallo-lati a e b – retro

CHI VOLESSE VEDERE LE ALTRE SCULTURE DI MARMELLI CON RELATIVI COMMENTI CLICCARE IL NOME NELLA CASELLA CERCA IN QUESTO BLOG

GUERRIERO CON ELMO (2 foto) E CARIATIDE (2 foto) dello scultore MARMELLI

MARMELLI_guerriero con elmo 2
MARMELLI_guerriero con elmo 1-cariatide_marmelli-cariatide 5

 

LINK per richiamare le tre foto del “Guerriero con elmo -lati AeB e retro” dello scultore MARMELLI

M_guerriero con elmo a cavallo-lati AeB-retro (1)

 

GUERRIERO CON ELMO A CAVALLO (lato A)

 

M-guerriero con elmo a cavallo 2- (2)

GUERRIERO CON ELMO A CAVALLO (lato B)

 

M_guerriero con elmo a cavallo-lati B

 

CONFLITTI ANCHE NELLA DIDATTICA SCIENTIFICA del dott. prof. Antonino Drago, Università di Pisa

INSERISCO L’ART. IN PDF CON UN LINK ESTERNO:

DRAGO_ConflittilDidattSci

IN .ODT:

DRAGO_ConflittilDidattSci

ALTRIMENTI LEGGERE DIRETTAMENTE L’ART. UN PO’ MENO ORDINATO:

L’INTRODUZIONE DEL CONFLITTO ANCHE NELLA DIDATTICA SCIENTIFICA 
di Antonino Drago, Università di Pisa
  1. La nascita e lo sviluppo del conflitto intellettuale

La nostra cultura didattica è interna alla cultura occidentale, che a sua volta, è figlia della cultura greca, quella che anche nella scultura rappresentava idee fissate di cose astrattizzate. Il conflitto delle idee era estraneo ad essa, non tanto perché non l’avesse mai pensato (ricordiamo che per Eraclito tutto era conflitto), ma perché la prima esperienza di conflitto intellettuale che aveva subito (la crisi dei sofisti che dimostravano il vero e poi il falso) li ha spinti a restaurare la sicurezza nella razionalità. Ciò ha portato a costruire o un mondo di idee assicurate dalla metafisica (le idee platoniche) o un sistema sicuro perché onnicomprensivo (quello di Aristotele), tanto da includere anche la teoria delle leggi con cui la mente ragiona (logica) e la teoria della teoria, che deve avere la forma deduttiva.

Il conflitto intellettuale perciò nasce dopo il mondo intellettuale greco. In particolare nasce nella scienza quando nel sec. 17° la matematica introduce il concetto di infinito nella Fisica in una maniera molto robusta (analisi degli infinitesimi). Si crea il conflitto tra il nuovo mondo (scientifico) e il vecchio mondo della antica Grecia, che volontariamente si era chiuso all’idea dell’infinito; e si crea il conflitto tra cultura scientifica e cultura umanistica, perché questa cerca di restare nel finito tipico dell’umano soggettivo.1

Poi la rivoluzione francese ha generalizzato il conflitto dentro la cultura (oltre che nella società); e non a caso poi questo movimento fu represso per un intero periodo dalla politica della restaurazione di quella pace intellettuale che c’era prima. Infine è stato Marx che nella teoria della società ha introdotto il conflitto tra gruppi sociali. Questo processo storico dell’intellettualità occidentale poi si è ribaltato sul soggetto; Freud, (mettendo da parte l’anima umana della scolastica, divisa nei tre elementi armonici: memoria, intelligenza e volontà) ha introdotto il conflitto di tre componenti della personalità umana, irriducibili e incompatibili tra loro Es, Io e Super-io. Infine, anche nel luogo privato dei potenti industriali, la fabbrica, è entrato ufficialmente il conflitto: è dall’inizio del sec. XX che si ammettono legalmente i sindacati, preposti a interpretare e risolvere i conflitti collettivi degli operai col padronato.

Possiamo concludere che la cultura moderna, in opposizione a quella antica, è caratterizzata essenzialmente dal conflitto.

  1. L’introduzione del conflitto nella didattica in generale

Quanto di questo travaglio millenario della cultura (occidentale) è stato recepito dalla didattica scolastica?

Sembra poco o niente. Anzi si può sostenere che la scuola, in corrispondenza ad un disegno autoritario che vuole tutto “in pace”, giunge a mutilare anche la cultura scientifica quando questa include dei conflitti. Infatti, perché a scuola non si insegna logica? Forse non è una scienza? Eppure lo era già nel medio evo, quando veniva insegnata nel famoso “trivio” (grammatica, retorica e logica). Poi dal 1848 la logica è diventata addirittura una scienza matematizzata. Così pure, non è forse una scienza l’economia? Lo afferma autorevolmente l’Università, che ci ha istituito una Facoltà (Scienze economiche). Come pure ha istituito Scienze Politiche. Ma allora perché tuttora non si insegnano queste materie nei licei italiani? Può essere discutibile che si insegnino le scienze politiche, ma non che si elimini la logica.

La risposta alla domanda precedente è: perché quelle sono materie conflittuali: perciò non possono essere insegnate ex-cathedra con affermazioni tali che, se lo studente le ripete allo stesso modo, viene approvato, altrimenti viene bocciato. Infatti la scienza logica è essenzialmente conflittuale: dopo la nascita della logica matematica (1848) alla fine del secolo XIX è nata prima la logica matematica modale, poi quella intuizionista, poi quella minimale, ecc. Questo conflitto è evidente sin dalla operazione logica più importante nei ragionamenti, la implicazione. Nella logica classica la implicazione è chiamata “materiale”, perché permette che dal falso segua il vero, il che non corrisponde affatto al senso intuitivo che la nostra mente dà all’implicazione. La logica modale è nata proprio per cambiare questa formalizzazione. Se a scuola si insegnasse una sola logica, qualsiasi studente potrebbe trovare in libreria libri sulle logiche non classiche, impararle e poi in classe contestare l’insegnante sulla unicità della logica insegnatagli.

Quindi si insegna solo ciò che è sicuro e che preserva l’immagine di una scienza “in pace”, che dà solo risposte univoche e indiscutibili.

Ma ci sono stati dei fatti storici che hanno smosso dalla fissità statica secolare questa situazione della didattica scientifica, per accettare il conflitto almeno dentro la struttura didattica.

Il primo fatto è stato quello della riforma della scuola media inferiore nel 1963. Prima quella scuola era sì divisa da quella di avviamento, ma non per motivi culturali, ma di classe. Cioè nella struttura scolastica il conflitto c’era, ma come conseguenza del più ampio e forte conflitto sociale. Nella scuola di avviamento (al lavoro, il più presto possibile) non c’era cultura; l’unica cultura era quella delle persone benestanti; essa passava nella scuola media con il latino, in modo da preparare gli studenti alla cultura greco-romana insegnata al liceo classico, o al più, nel liceo scientifico (quel liceo che aveva creato una variante, ancora sub judice, includente la cultura scientifica,.

Ma quando c’è stata la riforma della scuola media unica, il conflitto è entrato nelle scuole medie, in ogni classe. Poiché il latino è diventato a scelta, il percorso precostituito della cultura greco-romana ha perso importanza e la cultura è diventava un fenomeno per la massa, nella quale si potevano incrociare tanti tipi di cultura; tanto per cominciare, quella classica e quella scientifica, che ora non poteva essere più tenuta sub judice. Di fatto, poi fu la cultura dei mass media a prendere il sopravvento su tutta la cultura della scuola media; e i mass media avevano una pluralità di culture (o subculture: quiz, sport, varietà, spettacoli, cultura tradizionale, ecc.).

(In quel tempo anche l’Università ha tolto quegli sbarramenti ai diplomati degli istituti tecnici e magistrali che prima imponevano la cultura greco-romana anche ai futuri medici e fisici. Anche i professori universitari hanno dovuto adattarsi ad una pluralità di formazioni di base).

Poi la struttura scolastica è stata sconvolta dai “decreti delegati” del 1974; essi hanno accettato il conflitto nell’organizzazione della vita scolastica: gli studenti sono stati riconosciuti come un soggetto collettivo che a pieno titolo partecipa alle decisioni scolastiche e può contestarle per legge. Uno studente che continuava a studiare leggi scientifiche, assicurate come indiscutibili, però nell’ambito scolastico poteva mettere in discussione tutta la organizzazione e tutte le dispozioni del preside. A mio giudizio, tuttora la scuola non si è ripresa da questa scossa destabilizzante i vecchi equilibri. Ma non si è ripresa anche perché non ha portato fino il fondo la accettazione del conflitto, cioè nella cultura scolastica.

  1. L’introduzione del conflitto nella didattica scientifica

La didattica scientifica è stata sconvolta proprio quando la cultura scientifica ha incominciato ad emanciparsi dalla posizione subordinata verso la cultura umanistica; allora è stato introdotto il conflitto almeno pedagogico. Questa è la storia dello Sputnik: curiosamente un oggetto missilistico è stato decisivo per la cultura scolastica.

Nel 1958 i russi, per primi, inviarono un satellite nello spazio; per di più lo Sputnik era grosso. Gli statunitensi stavano dormendo sonni tranquilli perché quando alla fine della guerra invasero la Germania sconfitta, si preoccuparono di catturare i massimi scienziati missilistici del tempo, in particolare von Braun, l’inventore delle famose V-1 e V-2 che avevano terrorizzato Londra. Grande fu quindi la loro sorpresa nel vedersi scavalcare nella gara spaziale. Dopo un anno dallo Sputnik, riuscirono ad inviare nello spazio a malapena un satellite di appena tre kg.

Il problema non era solo sportivo, ma era addirittura esistenziale. Infatti nei primi anni ’50 le due superpotenze avevano capito che, se in una guerra avessero usato le armi nucleari che esse possedevano, avrebbero creato un inferno sulla Terra, quindi anche per gli stessi vincitori. Perciò avevano concordato di sfidarsi piuttosto (o almeno, in prima battuta) su terreni meno disastrosi. La prospettiva della guerra militare fu sostituita dalla gara economica-tecnologica; i popoli si sarebbero convinti della giustezza del sistema o comunista o capitalista giudicando quale dei due sistemi avrebbe dato loro i benefici maggiori. Il comunismo era sicuro di vincere, perché la interpretazione (marxista) della storia dava il proletariato come la nuova classe destinata al potere mondiale.

Quindi la vittoria URSS dello Sputnik significava l’inizio della fine storica del capitalismo e del potere mondiale degli USA. Negli USA il momento fu drammatico; per reagire, essi cercarono di comprendere perché non aveva funzionato l’avere dalla loro von Braun. Allora notarono che sì, negli USA c’era un insuperato vertice di cervelli, ma la base di scienziati e tecnici era relativamente ristretta rispetto alla grande base di laureati nei corsi brevi dei Tecnicum russi; che quindi avevano sopperito alla qualità con la quantità.

Allora gli USA si posero il problema di aumentare il gettito del loro sistema scolastico nelle materie scientifiche. Il problema era grave, perché quello è un Paese estremamente liberista, che vede l’intervento statale come fumo negli occhi; figurarsi nel sistema educativo! Si risolse il problema convocando i migliori scienziati e facendoli applicare alla produzione di nuovi testi per le high school USA, testi da propagandare come i più avanzati possibile. Fu allora che nacquero i libri che poi sono restati classici: il PSSC (Physical Science Study Committee), il BSSC per la biologia, il MSP (Mathematics School Project)2 Dopo qualche anno anche l’Inghilterra intervenne, iniziando il progetto Nuffield. Questo progetto didattico sperimentò i nuovi testi per i vari rami scientifici in maniera collettiva, con riunioni annuali degli insegnanti che li adottavano. In Europa l’OCSE (organizzazione di cooperazione economica), in vista di una maggiore competitività economica, premette sui Ministeri dei vari Paesi affinché venisse adottata la cosiddetta “insiemistica”, cioè la ideologia matematica del Bourbaki nelle scuole.3 In Italia essa ebbe poco successo (portò a qualche modifica laterale dei testi scolastici); ma in Francia l’insegnamento della matematica fu stravolto, costringendo gli studenti delle elementari e medie a diventare incomprensibili ai loro genitori su questa materia.4

Come riassumere questa modificazione radicale della didattica scientifica? I vecchi metodi da insegnamento erano da catechismo: formule da imparare a memoria. In contrasto, la nuova didattica voleva rendere attraente la materia; non più matematica da inghiottire, non più formule dentro riquadri da saper applicare direttamente a primo colpo, non più solo figure geometriche e solo le essenziali. Invece, pistolotti motivazionali (“La fisica vale bene una vita”, “La fisica è bella”, “Se faccio, capisco”, ecc.), libri a colori, con figure in quantità e con fotografie (e magari fumetti e strisce di comics), proposta didattica la più possibile coinvolgente, insegnanti estroflessi e simpatici, svalutazione della esattezza dei risultati del lavoro dello studente per premiare invece il suo interessamento, ecc.. Tanto che il libro di testo non era più per lo studente, ma per l’insegnante; che così diventava il vero operaio della situazione, mentre lo studente viveva esperienze di gruppo (esperimenti) o intellettuali.

In sintesi, questa novità era la introduzione della pedagogia attiva nelle materie scientifiche; che finallora invece erano state funzionali ad una dura selezione per quelli che erano nati “piccoli scienziati”, o avevano il “pallino” della scienza. Di fatto, i contenuti erano rimasti quelli di prima, salvo aggiustamenti per facilitare l’apprendimento (nel PSSC fu anticipata la termodinamica-meccanica statistica perché si scoprì che così le ragazze imparavano meglio), o innovazioni per avvicinare lo studente alle notizie di giornale sulle nuove scoperte scientifiche (in Fisica si metteva qualcosa sull’atomo e magari sul nucleo; in biologia, si misero le prime novità del dopoguerra).

In breve, la nuova didattica scientifica voleva compiere una rivoluzione pedagogica nella didattica scientifica. Ci sarebbe riuscita se la riforma fosse stata obbligatoria. Ma, a cominciare dagli USA, il cui liberismo non poteva permettersi imposizioni didattiche, essa restò sempre compresente con la vecchia didattica; generando così, nell’insegnamento scientifico scolastico, un conflitto nei metodi educativi di insegnamento: il nuovo contro il vecchio (che all’Università è stato ancora più resistente).

Dopo circa cinquant’anni da questi avvenimenti, la situazione non è sostanzialmente mutata. Sempre c’è il conflitto tra pedagogie diverse; i programmi hanno sì introdotto molte innovazioni nei programmi didattici; ma sempre si sono mantenuto esclusi i conflitti esistenti all’interno dalle materie scientifiche. Per intendersi, talvolta si è anche introdotta la logica, ma solo per la parte più banale e senza far vedere quelle sue insufficienze che hanno fatto nascere le logiche matematiche alternative. In definitiva, il progetto autoritario della didattica scientifica ancora una volta non ha ammesso che lo studente, e neanche l’insegnante, discutessero sulla scienza, oltre che ripetere sempre la stessa la scienza.

In sintesi, il conflitto, che la didattica scientifica manteneva fuori dalla porta, è entrato dalla finestra della organizzazione scolastica e della pedagogia; ma è stato accuratamente lasciato all’esterno della “legge scientifica”, che è dura come prima.

  1. La matematica del conflitto

Eppure la scienza aveva già ammesso il conflitto al suo interno; lo si diceva prima riguardo la logica; nei primi anni del ‘900 c’erano stati i conflitti (almeno temporanei) durante le crisi della fisica e della matematica, crisi che avevano fatto sorgere teorie scientifiche del tutto in opposizione alle teorie scientifiche del passato glorioso e anche trionfalista.

Ma addirittura, dall’inizio del ‘900 è nata anche la matematica dei conflitti, benché a prima vista è una contraddizione in termini il mettere assieme la matematica, che è il mondo della precisione, con i conflitti, che è il regno della irrazionalità.5 Infatti così è sembrato per millenni, (benché già Pitagora avesse proclamato che “Tutto è numero”).

La contraddizione non è apparsa insuperabile ad un giovane quacchero, Lewis F. Richardson, il cui fratello era morto in guerra, e che, come obiettore di coscienza, lavorava in una infermeria della I guerra mondiale. Egli era un fisico, che si interessava professionalmente di meteorologia: un campo di fenomeni quanto mai complessi e apparentemente imprevedibili. Ma lui sapeva che anche la metereologia era soggetta ad una formalizzazione matematica. Con questa idea guida, Richardson propose per primo una formalizzazione della corsa agli armamenti e, in generale, dei fenomeni competitivi.

L’idea è semplice; invece di considerare una sola equazione differenziale alla volta, egli ha accoppiato due equazioni differenziali (o anche, due equazione a differenze finite); in modo che gli aumenti o le decrescite della variabile della prima equazione differenziale, dipendessero dagli aumenti o dalle decrescite dell’altra variabile, quella della seconda equazione differenziale.

dx/dt = ky – ax + g;……………dy/dt = lx – by + h

Che dicono queste equazioni? La prima dice che il primo Paese aumenta i suoi armamenti x a causa degli armamenti y del Paese confinante, salvo essere limitato dall’aver già raggiunto un livello molto alto e dall’avere stimoli o limiti (g) dovuti a ideali o a difficoltà (ad es. economiche).6 Analogamente per la seconda equazione.

Risolvere questo sistema è un po’ complicato; ma lo si semplifica se ci chiediamo quando avverrà che i due Paesi saranno soddisfatti della crescita già ottenuta e quindi non avranno più incrementi; cioè, se consideriamo nulle le variazioni dei primi membri. Così la matematica si riduce a quella delle equazioni di due rette; delle quali si può cercare il punto di incontro; quando esso c’è (comunque lontano), indica che la corsa agli armamenti dei due Paesi può trovare un punto d’incontro, quindi tutto il sistema è in equilibrio. Altrimenti i due Paesi sono condannati a correre all’infinito per accumulare spasmodicamente ulteriori quantità di armi distruttive.

Le pubblicazioni di Richardson (compreso un libro) ebbero un discreto successo; ma momentaneo. Lui stesso lasciò questo argomento di studio, per riprenderlo solo quando, negli ultimi anni ’30, un’altra guerra sembrò imminente.

E’ solo dopo la seconda guerra mondiale che questo settore di studi incominciò a svilupparsi, anche per la concomitante crescita della teoria dei giochi (competitivi). Questa era iniziata negli anni ’20 per opera di padri illustri: Emilio Borel e Janos Neumann. Dal 1944, data del famoso libro di Neumann e Morgenstein7, c’è stato un forte interesse degli economisti per questo nuovo argomento di studio; tanto che da un po’ di tempo è diventato materia corrente di studio universitario.

La teoria dei giochi include giochi a variabili anche continue (così è nata con Borel); ma i suoi problemi più interessanti concettualmente si hanno quando si usano variabili discrete. Nella sua forma più semplice un gioco è dato da otto numeri interi che vengono comparati tra loro per vedere qual è il più grande e il più piccolo; questa formalizzazione poteva nascere anche nella mente di Archimede. Eppure la sua capacità di sintesi è grande, perché, come ha sottolineato un altro quacchero famoso, A. Rapoport,8 la teoria dei giochi ha il concetto di strategia, il quale sintetizza un numero qualsiasi di mosse (le quali non vengono neanche prese in considerazioni dalla teoria). Quindi la teoria dei giochi è una teoria da capi o da generali, piuttosto che una teoria da subordinati o esecutori delle singole mosse (così come sono di solito le teorie matematiche).

Già la teoria dei giochi a due giocatori, ognuno dei quali ha solo due strategie possibili, può dare dei tremendi rompicapo, anche dal punto di vista filosofico, perché alcuni giochi danno luogo a veri e propri paradossi. I giochi più semplici sono i giochi a somma zero, là dove un giocatore vince tutto quello che perde l’avversario e solo quello. Per questi giochi Neumann ha dato un teorema (del minimax) che assicura sempre la strategia ottima.. Esso suggerisce ad ogni giocatore di scegliere il massimo delle sue vincite minime; quindi dà un criterio cautelativo, da mezzo bicchiere vuoto.

Ma i conflitti a somma zero sono poco interessanti, perché schiacciano la creatività di un gioco in un formalismo troppo schematico (tutto il mondo è racchiuso nel conflitto tra i due). Questa creatività riappare con i giochi a somma non zero, dove ambedue i giocatori possono anche vincere assieme o perdere assieme (ovviamente, grazie al coinvolgimento di terzi; che però nel gioco formale non fanno mosse e quindi, come giocatori, non esistono).

E’ da sottolineare che questa modifica rappresenta il cambiamento effettivo avvenuto nella storia delle guerre. Quando i Romani vincevano, le loro perdite erano trascurabili e i guadagni (il bottino) erano tutti a carico del perdente. Ora invece (seconda guerra mondiale, Jugoslavia) chi vince è costretto ad aiutare chi perde (per evitargli tracolli economici che trascinerebbero anche il vincitore); o addirittura chi vince, vince solo con il suo esercito, mentre la sua popolazione resta disastrata o distrutta (ad es. il Vietnam del Nord rispetto agli USA).

Per dare almeno un cenno di questo grande campo di ricerca, esaminiamo un suo gioco: il famosissimo dilemma del prigioniero, su cui c’è una ampia letteratura, sia matematica che filosofica.9 A causa di un delitto, la polizia arresta due delinquenti, che sa che quasi sicuramente l’hanno commesso; ma non ne ha le prove. Li pone in due celle separate, dove ognuno ha due strategie: confessare (C) o non confessare (NC). La matrice del gioco (ottenuta sovrapponendo le due matrici dei pagamenti per i due giocatori) è la seguente (i numeri contano solo come scala di preferenze).

Tab. 1: GIOCO DEL DILEMMA DEL PRIGIONIERO 

                    C                    NC

C                -5, -5              5, -10

NC            -10, 5               0, 0

Il caso (-5, -5) è il risultato della confessione di ambedue: indica la loro giusta condanna. Il caso (5, -10) significa che se il secondo non confessa e il primo sì, questi è premiato dalla polizia come “collaboratore”, mentre il tribunale raddoppia la giusta pena al secondo perché questi non ha confessato. Analogamente il caso (-10, 5). Ma se nessuno dei due confessa, la polizia, rimasta senza prove, li deve liberare: (0,0).

Ora, qualsiasi regola che scelga la strategia in modo cautelativo (e anche la regola matematica di Neumann) porta i due a scegliere C, cioè la coppia di strategie (C,C), che fa ottenere (-5, -5); quando invece è evidente che (NC,NC) è la coppia migliore, perché dà (0, 0). Ma quest’ultima strategia richiede la cooperazione tra i due, al di là di ogni dubbio o diffidenza. Da qui il conflitto di due razionalità opposte; quella cautelativa matematizzata, e quella cooperativa ma non basata su prove formali.

Questo gioco è eccezionale. Tutta la scienza tradizionale esclude i paradossi e le contraddizioni; cosicché non si ragiona mai su un conflitto di razionalità diverse. La teoria dei giochi invece lo può fare, mediante questo gioco particolare (e vari altri).10

Si noti che la stessa corsa agli armamenti, che Richardson aveva formalizzato con due equazioni differenziali, qui viene formalizzata con otto numeri; basta sostituire A (armarsi) a C, e NA (non armarsi) a NC. La struttura logica delle soluzioni di Richardson è la stessa di questo gioco: le nazioni si dissanguano per armarsi, a causa della diffidenza reciproca; benché sia evidente che, se cooperassero senza armarsi, ambedue ci guadagnerebbero molto.

Per di più, adesso il gioco rappresenta anche la strategia cooperativa ed il suo contrasto radicale con la strategia bellica. Come si vede, la semplificazione drastica del formalismo matematico non ha impoverito la rappresentazione della realtà, ma anzi l’ha arricchita. Ciò va contro l’aspettativa generale degli scienziati, e può essere elemento di riflessione per qualsiasi applicazione della matematica (ad es. la termodinamica e la chimica, la cui matematica è semplice, sono forse meno universali, nel loro campo di fenomeni, della meccanica, la cui matematica è sofisticata?).11

Ci sono poi altre formalizzazioni dei fenomeni conflittuali, ad es. la formalizzazione statistica dei conflitti mortali e guerre. Essa è molto istruttiva, perché mostra che le guerre si distribuiscono nella storia (e sotto tutti i parametri possibili) secondo una distribuzione che si chiama poissoniana, quella che è tipica dei fenomeni casuali: cioè (come sempre hanno detto i saggi) le guerre, viste sui tempi lunghi, sono fenomeni storici casuali!12 I professori di storia lo sanno?

Inoltre si può mostrare che anche la fisica ha la capacità di insegnare conflitti. Per brevità, su questo tema rimando ad altre pubblicazioni.13

  1. Il conflitto in logica: la sua didattica

Ma tutto ciò è forse difficile da insegnare? Forse richiede conoscenza tecniche superiori, o capacità intellettuali che solamente i più bravi della classe possono avere? La pubblicazione degli Insegnanti Nonviolenti dimostra che questo non è vero; tanto che riporta come E. Castelnuovo ha trovato una maniera di insegnare la poissoniana alle scuole elementari!

E se anche fosse vero che ciò che precede è difficile da insegnare, certamente non lo è il conflitto più interessante, quello che riguarda direttamente la nostra mente: il conflitto nella logica. Esso può essere insegnato appena si acquisti conoscenza della lingua che si usa; esso, anzi, favorisce quell’esercizio logico di sintassi che la scuola si sforza di insegnare attraverso una serie di regole specifiche.

Nel passato la logica classica ha dominato fino al punto da quasi escludere ogni altra logica. Ma, come si diceva dianzi, nel secolo XX la ricerca di logica matematica ha chiarito che esistono più logiche, che sono altrettanto importanti. Inoltre ha chiarito che la legge discriminante tra la logica classica e (quasi tutte) le altre logiche è quella della doppia negazione, piuttosto che quella del terzo escluso.14

Nel seguito sfrutteremo questo avanzamento. Basta notare che nei testi scientifici ci sono frasi doppiamente negate, le quali non sono equivalenti alle corrispondenti positive per mancanza di evidenza nella realtà (FDN); quindi appartengono alla logica non classica, perché per loro non vale la legge della doppia negazione. Ad esempio, la frase: “E’ impossibile il moto che non ha fine” (anche nel seguito le negazioni verranno sottolineate per facilitare il lettore nel riconoscerle nelle FDN) non è equivalente all’affermazione: “Ogni moto ha una fine”, perché questa seconda frase, essendo affermativa, è obbligata a dare a priori le prove operative del luogo e del momento finale della fine del moto; a causa dell’imprevedibile attrito ciò non è possibile.

Se un autore scientifico usa FDN, ciò significa che egli ragiona in logica non classica; la quale ovviamente introduce ad un mondo intellettuale del tutto differente da quello della logica classica.

Nei testi originali di Freud e di Marx si trovano molte FDN. In particolare si trovano in uno scritto molto breve e leggibile da chiunque, in cui Freud ha espresso il metodo della psicanalisi.15 Freud evoca la scena usuale della stanza dell’analista: il paziente, steso sul lettino, racconta i suoi sogni; egli dice ad es. che ha sognato di essere andato a trovare la madre; ma ad un certo punto dell’incontro, avvenuto in cucina, la madre l’ha fatto tanto arrabbiare che gli è venuta voglia di prendre un coltello sul tavolo e di ammazzarla; ma, aggiunge il paziente: “Però io non volevo ammazzare mia madre”. L’analista deve cogliere al volo questa negazione e, a sua volta, deve negare quella frase: “Non è vero che il paziente non voleva ammazzare la madre”. Infatti, dice Freud, la negazione linguistica è il segnale di un processo di negazione interiore (soppressione e rimozione) di un trauma, che ancora tormenta il paziente; e che, come tutte le cose inconsce, viene a galla solo quando il suo Io allenta la pressione oppressiva, in particolare nei sogni.

Quello che fa l’analista (negare la negazione del paziente) pone un inizio, un principio di quel metodo di indagine sul paziente che può risolvere il conflitto psichico; quindi un principio metodologico. (Oltre che sul lavoro del singolo analista sui sogni del singolo paziente, Freud ha teorizzato più in generale sui sogni di tutti i pazienti; allora il suo principio metodologico è espresso da un’altra FDN: Non è vero che i sogni non siano realtà).

Questa differenza tra logiche differenti è semplice, alla portata di tutti i livelli della didattica, anche della quinta elementare. Essa inoltre è utile per eliminare gli abusi di linguaggio (del tipo: “Non c’è nessuno”; che invece dovrebbe essere: “Non c’è alcuno”; oppure “Non mi hai dato niente!”; invece di “Non mi hai dato alcunché”), o a sottintendere pezzi importanti della frase. Ad es., Popper. “La scienza è fallibile [a causa di esperimenti negativi]”; Jonas: “L’etica della paura [del suicidio dell’umanità]”; in modo da avere una precisa corrispondenza tra pensiero e linguaggio, tale che la mente possa aver fiducia nelle parole che esprimono il suo pensiero.

Poi si può notare che in logica c’è un conflitto ancor più ramificato; ad esempio esaminare (nel liceo) la differenza tra implicazione materiale e implicazione intuitiva; e poi studiare i rimedi che si possono portare (secondo le diverse logiche). Allora finalmente lo studente potrebbe affrontare la logica non in quella maniera scorretta che viene suggerita dalla filosofia mediante qualche idea del sillogismo aristotelico e poi con la fumosa dialettica di Hegel (o con quella tutta da riconoscere di Marx; si ricordi che su diamat = materialismo dialettico, si è fondato un regime di potere, l’URSS, che ha dominato le menti delle persone di metà del mondo per il periodo di tre generazioni).

Ancor più in generale, è chiaro che se si ragiona con FDN, non si può ragionare deduttivamente da poche frasi prese come assiomi certi. Ogni FDN (vedasi ad esempio quella del moto perpetuo, o quelle di Freud), indicano una ricerca, non una sicurezza; una induzione, non una deduzione. Induzione a che fine? A quello di risolvere un grande problema; che nella termodinamica, dove l’impossibilità del moto perpetuo è servita a fondare quasi tutta al teoria, è “Non è vero che il calore non è lavoro”; e nella meccanica che ha usato lo stesso principio, è il problema di conoscere le caratteristiche principali del movimento; in Freud è quale sia il trauma del paziente; e in Marx il problema è come superare storicamente il capitalismo. Ecco che allora appare una novità ancor più importante: il conflitto nella logica è la espressione più precisa di un conflitto più generale, quello tra due tipi di organizzazione di una teoria: o una organizzazione deduttiva, che ricava tutte le verità dalla verità delle poche proposizioni iniziali (principi-assiomi), o una organizzazione che, in maniera induttiva, cerca e trova un nuovo metodo che risolva un dato problema.

In definitiva, la organizzazione della teoria non è più solo quella deduttiva indicata da Aristotele, ma è anche quella induttiva. Allora capiamo che è molto importante chiarire che esiste un conflitto in logica, perché altrimenti non saremo mai padroni della nostra mente, né sapremmo in quale organizzazione del pensiero ci troviamo. In particolare, stando attenti alla presenza di FDN, si ha un nuovo metodo di analisi logica, che permette di decidere sia se l’autore ragioni o no con precisione logica in logica non classica, sia che tipo di ragionamento egli segua, sia che organizzazione egli abbia dato alla sua teoria.

  1. Il conflitto nella didattica della fisica e nella didattica della chimica

Ma esistono conflitti all’interno delle scienze della natura?

Consideriamo la scienza che si insegna nelle scuole superiori. Essa cerca giustamente di qualificarsi al livello di teorie scientifiche; infatti, che di più educativo e formativo dell’insegnare a quali altezze intellettuali è giunta la mente umana, partendo dai dati di fatto sperimentali?

Queste teorie contengono in maniera essenziale la matematica. Nelle scuole giustamente si insegna almeno quel minimo livello di matematica col quale poter introdurre le teorie scientifiche più importante (anche se non le più recenti). Ad es., la didattica della fisica insegna l’ottica geometrica; questa richiede la conoscenza di quasi solamente la geometria euclidea, che si impara sin dalla scuola elementare. Si noti che questa geometria, giustappunto per lo spirito dei greci antichi, non usa l’infinito, ma solo l’illimitato; ovvero l’infinito solo potenziale (cioè l’infinito che è approssimabile ma mai è raggiungibile). E’ vero che nell’ottica la formula delle lenti sottili può portare l’immagine all’infinito; ma qui si tratta di un infinito virtuale, perché riguarda non l’oggetto materiale o la lente, ma l’immagine che è immateriale.

Invece poi la meccanica classica richiede concetti matematici più avanzati; chi fa il liceo scientifico deve imparare i concetti (approssimativi) di derivata e integrale. Essi sono nati mediante gli infinitesimi dx e dt; che sono numeri definiti come inferiori a qualsiasi altro numero superiore a 0; ovvero, come l’inverso del numero infinito. Quindi questo è l’infinito che è un numero come qualsiasi altro; o è il punto finale di una retta, anche se nessuno è mai arrivato là).16 In definitiva, nell’insegnamento della fisica si nasconde un conflitto sul tipo di matematica usata: o la matematica (solo finita o) basata sul solo infinito potenziale, o la matematica basata sull’infinito in atto.

Ovviamente, nelle varie teorie fisiche questi due tipi di infinito danno luogo a concetti molto diversi. Ad esempio, in meccanica è essenziale il tempo come variabile continua, con cui si calcolano le derivate e gli integrali dell’analisi infinitesimale; mentre invece la termodinamica, che non ha bisogno di infinitesimi e di infiniti, usa una matematica elementare: il suo tempo è solo quello dualistico del prima-dopo una trasformazione.

Così pure il concetto di spazio comporta un analogo conflitto; tra il concetto che vale nella ottica e nella meccanica, cioè quello che riguarda l’infinito universo, matematizzato con tre assi cartesiani; e il concetto di spazio della termodinamica, che è tutto diverso: è racchiuso in un volume di misura data (sempre finita).

Ma chi spiega ciò allo studente? Gli si insegnano le teorie differenti, e differentemente fondate, solo per i loro risultati e presentando i loro concetti teorici come se ogni volta fossero calati dal cielo.

Ma allora ci accorgiamo che con la precedente analisi abbiamo individuato due conflitti che sono nei fondamenti di una teoria scientifica: quello sul tipo di infinito (o potenziale o in atto) e quello sulla organizzazione della teoria; questo secondo è equivalente a quello su due tipi di logica: o classica per la deduttività, o non classica (con le FDN) per l’induzione. Questi due conflitti possono essere visti in maniera più concreta nelle due grandezze fisiche che di solito sono basilari, tempo e spazio: il tempo continuo o quello prima/dopo; o lo spazio infinito, o quello confinato.

In sintesi:

1° i fondamenti di una teoria scientifica hanno sempre due conflitti, non sovrapponibili tra loro.

2° Ogni conflitto è dovuto ad un concetto filosofico – o l’infinito, o l’organizzazione – che poi, nella storia della scienza, è stato oggettivato e formalizzato mediante una specifica teoria scientifica: rispettivamente, la matematica (dell’infinito) e la logica matematica.

3° Ogni conflitto nasce perché ognuno dei due concetti filosofici è suddiviso in due scelte possibili:

– l’infinito in atto (IA) o potenziale (IP), che sono alla base rispettivamente della matematica classica e della matematica costruttiva;

– l’organizzazione assiomatica (OA) o problematica (OP), basate rispettivamente sulla logica classica e sulla logica non classica.

4° In ogni conflitto, le due scelte sono incompatibili tra loro e le teorie con scelte differenti sono tra loro incommensurabili.

5° Complessivamente, tutte le teorie scientifiche esprimono, con le loro scelte, quattro modelli di teoria scientifica, che seguono quattro tipi di razionalità scientifiche, separati dalle loro incommensurabilità.

DRAGO_FIG10001

Tab. 2: I FONDAMENTI DELLA SCIENZA

Infinito Infinito in Atto Matematica Classica
Infinito Potenziale Matematica Costruttiva
Organizzazione Organizzazione per Assiomi Logica Classica
Organizzazione su un Problema Logica non classica

In definitiva, questa chiarificazione comporta che l’insegnamento di una teoria scientifica chiarisca i due conflitti fondamentali che stanno alla sua base.

Da questo punto di vista, come risulta l’attuale insegnamento della Fisica nelle scuole superiori? Sorprendentemente, appare a prima vista che le teorie fisiche da insegnare sono quattro: ottica geometrica, meccanica, termodinamica, elettromagnetismo. Sono esse ordinabili secondo le quattro coppie di scelte sui due conflitti? Si!

Tab. 3: I QUATTRO MODELLI DI TEORIA SCIENTIFICA E LE QUATTRO TEORIE FISICHE

OA

OP

IA

Meccanica di Newton

Elettricità e Magnetismo

traiettoria, linea di forza

IP

Ottica geometrica

Termodi-namica

distanze, processi

spaz. assoluto, sistema di rif.

campo, sistema

(In corsivo sono indicate le grandezze fisiche che più rappresentano una particolare scelta compiuta dalle teorie fisiche di quella riga o quella colonna.

In altri termini: i didatti della fisica sono stati così sagaci che, tra le tante teorie fisiche che potevano scegliere di insegnare, hanno scelto proprio quelle che rappresentano i quattro modelli di teoria scientifica, cioè tutte le coppie di scelte possibili sui suddetti conflitti. Quindi questi didatti, attraverso le loro teorie, di fatto hanno intuito i fondamenti della loro teoria scienza.17 Ma non se ne sono accorti; perciò non dichiarano la loro scoperta agli studenti. Anzi, si sforzano di presentare la fisica come unitaria, nonostante (come indica la doppia freccia nella tabella) l’accostamento di meccanica e termodinamica strida, a causa della loro incommensurabilità.

Se si esamina la didattica della chimica, si nota che essa ha sofferto il conflitto sul tipo di organizzazione. La didattica tradizionale considerava la chimica per come essa era nata: basata sul problema di quali siano gli elementi costitutivi della materia, da trovare induttivamente, mediante l’esame della miriade di tutte le reazioni possibili tra le sostanze; cioè è nata come teoria OP. Infatti essa ha usato sistematicamente le FDN; ad es., “La materia non è divisibile al non finito”; Lavoisier e Dalton: “Chiameremo elemento quella sostanza che ancora non siamo riusciti a scomporre”.

Invece, da qualche decennio, per essere più rapidi nell’avvicinare la chimica del XX secolo (quantistica), quasi sempre si insegna chimica assiomaticamente: si illustra l’atomo come se fosse una pallina (immagine impossibile, secondo la meccanica quantistica!) e poi si dà la classificazione dei suoi livelli atomici, per così presentare deduttivamente tutti gli elementi possibili. Questo conflitto tra OP e OA nella didattica è rimasto vivo, perché c’è anche un movimento contrario, per tornare alla didattica precedente. Ma senza che il conflitto sia stato indicato agli studenti.

Diversa è la situazione dell’insegnamento universitario di chimica. Lì i chimici didatti sono stati anche loro sagaci nel saper individuare quattro teorie che, di fatto, indicano i conflitti fondamentali e le articolazioni delle possibili scelte.18 Anche qui, però, non se ne sono accorti e non lo dicono agli studenti.

Tab. 4: I QUATTRO MODELLI DI TEORIA SCIENTIFICA E LE QUATTRO TEORIE CHIMICHE

IA

IP

OA

Chimica Quantistica

Chimica Fisica

OP

Cinetica Chimica

Chimica Classica

7. La didattica della matematica solo apparentemente è senza conflitti

Purtroppo la didattica scientifica che manca all’appello è quella della matematica, la didattica scientifica che più di tutte dovrebbe dare le direzioni alla cultura scientifica; anzi, oggi essa è la didattica più oscura. Certo, questa didattica deve fare anche da supporto alle altre didattiche scientifiche; q quindi deve occuparsi di molte teorie. Ma ciò non le dovrebbe impedire di insegnare che cosa è una teoria matematica in tutta generalità, cioè secondo i quattro modelli di teoria scientifica. Invece questa didattica si è accontentata del primo modello di teoria scientifica che è nato nella storia della scienza, quello euclideo; e poi ha cercato semplicemente di attenersi sempre a quello; sia imitandone, ogni volta che è stato possibile, la sua OA, come se fosse l’unica organizzazione; sia riferendosi il più possibile al finito, così come fa la n geometria euclidea con riga e compasso.

Sappiamo bene che la prima operazione è stata possibile fino ad oggi, perché nella storia non c’è stato uno scienziato autorevole che abbia proposto, mediante una nuova teoria importante, una teoria matematica esattamente in una OP. In realtà, ci sono stati: Lobacevsky, che con questa organizzazione ha proposto proprio la prima geometria non euclidea;19 e Kolmogoroff, che così ha proposto per la prima volta la formalizzazione della logica non classica, l’intuizionista.20 Ma ambedue non erano coscienti di questa loro novità, o almeno non l’hanno dichiarata; perciò è passata inosservata agli altri scienziati (oltre al fatto che anche i loro lavori sono stati quasi ignorati dagli storici).

La seconda operazione è stata più tormentata. Perché quando i matematici moderni sono arrivati ad inventare la analisi infinitesimale, che usava l’IA, giustamente si sono entusiasmati dei risultati strabilianti che ottenevano con essa. Ma allora è nato un conflitto: questa matematica era in opposizione con la matematica di riga e compasso, essenzialmente, finita. Il conflitto si è esteso alla didattica: come insegnare la matematica, restando legati al finitismo di riga e compasso, pur sapendo che quella avanzata è l’analisi infinitesimale? D’altra parte, come insegnare solo quest’ultima, che ha avuto fondamenti equivoci per due secoli e che comunque impone di scegliere l’IA, che nelle scuole superiori è chiaramente un concetto difficile da far capire agli studenti? Anzi, esso è impresentabile come concetto basilare della scienza, che pretende di essere galileianamente sperimentale, in opposizione all’apriorismo dell’aristotelismo e all’idealismo di Platone.

Qui sta tutta la storica irresolutezza della didattica della matematica; che alla fine va a insegnare un misto di concetti, spezzoni di teorie, anche una teoria, la geometria euclidea, che però è antiquata, rispetto alle teorie della modernità.21 Questo tipo di didattica può essere rappresentato, almeno fino agli anni dello Sputnik, dalla Fig. 2. Ogni freccia di una teoria indica, col punto di partenza, le scelte effettive di quella teoria, e, con il punto di arrivo, le scelte che appaiono allo studente. Si notino le tante frecce, ognuna indicante la equivocità della didattica sui fondamenti di quella teoria, e si noti l’incrocio turbinoso delle frecce. E’ chiaro che la tentazione dell’insegnante di matematica è di fare ignorare che nella didattica della matematica c’è un grande problema di fondamenti.

Questa oscurità della didattica della matematica esiste perché i matematici, ritenendo che la loro scienza è esente (dal rapporto con la realtà concreta e quindi anche) dai conflitti, la concepiscono idealmente, come un mondo “in pace”, dove tutto ha il suo posto o lo avrà sicuramente tra breve. Questa loro opinione impedisce una chiarificazione della didattica, che è molto semplice e a basso costo didattico: insegnare l’algebra booleana, che è una struttura matematica molto attraente, perché può essere vista come teoria: dei circuiti elettrici, delle leggi della logica, degli insiemi (senza necessità di vederli infiniti), dei reticoli, dei numeri a base binaria, ormai molto usati; e al liceo un esempio molto semplice di struttura algebrica, perché è simmetria ed ha il merito di introdurre a definire i numeri razionali come campo.

DRAGO_FIG10002

Essa darebbe una chiara teoria IP, perché ivi tutto è finito, e OP, perché nelle leggi della logica possono essere poste (come all’origine storica) come risultato della ricerca sul problema delle regole del ragionamento. Al suo confronto, sarebbe facile comprendere le scelte di ogni altra teoria insegnata. E la didattica così potrebbe svolgere un chiaro percorso didattico sui fondamenti della matematica tutta.

7. Conflitto e sua conciliazione per saper lavorare dentro il pluralismo

A mio parere, se non si affronta la problematica dei fondamenti, l’insegnamento scientifico resta subordinato alla cultura dei mass media (a incominciare dalle riviste divulgative, per finire alle trasmissioni TV); che è più attraente non solo perché è più facile, ma anche perché è conflittuale in tutto, anche nell’informazione scientifica. Alla cultura scolastica anche scientifica resta il ruolo di concedere quel pezzo di carta che poi permette di arrivare ad una professione remunerata (come il ruolo degli esami che nella Cina antica permettevano di diventare mandarino).

In particolare, si formano esecutori incoscienti del senso culturale delle operazioni mentali che essi eseguono; si inculca l’assenso all’ipse dixit. In altri termini, cioè si arriva ad una specie di tradimento della scientificità galileiana, oltre che della fiducia degli studenti; i quali si aspetterebbero di essere trattati da persone razionali e desiderose, da persone di lì a poco adulte, capaci di assumersi le loro responsabilità di saper vivere in pieno la vita culturale della società moderna.

Ma, mi sembra di sentire una obiezione: “Ma tutti questi conflitti non fanno altro che confondere le idee agli studenti.”

Certamente non si può imparare la critica dei concetti, se prima quei concetti non sono stati appresi. Quindi non si possono studiare i fondamenti di una casa se non si sa qual è la casa che si sta esaminando. Ma una volta che la costruzione didattica dei concetti scientifici è finita, è autoritario lasciare agli studenti la coscienza del semplice muratore, che ha messo assieme i pezzi di quella casa, senza fargli sapere a che progetto essa corrispondeva e perché le linee risultanti sono state concepite in quella maniera. Qui c’è tutta la differenza tra esecutori e persone coscienti. Non credo che ci sia una valida esigenza sociale che gli studenti in massa debbano avere una mentalità solo esecutrice; se non l’esigenza del “grande fratello” di Orwell.

Né vale la scusante che lo studente può ricostruirsi da solo quella che è la problematica di fondo, sia nella logica che nei fondamenti. E’ come dire che mangiando torte, alla fine si riesce ad imparare la ricetta con cui esse sono state fatte. La via diretta è piuttosto quella di una didattica che sa presentare e affrontare gli argomenti per i loro contenuti culturali principali, non per gli aspetti laterali, quelli più tecnici e ripetitivi. Certo, qui un insegnante avrebbe ragione a ricordare che l’Università non dà la preparazione a tutto questo; perciò, nella attuale latitanza dei programmi ministeriali e della preparazione universitaria, l’insegnante dovrebbe assumersi tutta la responsabilità di innovare autonomamente la didattica. Ma io credo che, se l’insegnante aspira minimamente ad essere una persona di cultura, e non un impiegato esecutivo che semplicemente si fa gradire dagli studenti, certamente si impegnerà in quell’attività che lo riabilita come educatore, ai suoi occhi e agli occhi degli studenti.

Certo, l’insegnante dovrebbe scendere dal piacevole e comodo dislivello che gli permette di parlare ex cathedra (sia pure condizionato dal libro di testo); sui fondamenti dovrebbe diventare un uomo di cultura, che sa indirizzare gli studenti dentro una realtà conflittuale. Ma che cosa dovrebbe desiderare di più un insegnante se non proprio questo? E che dovrebbero chiedere di più i giovani, se non essere aiutati nella loro formazione umana e culturale, che passa essenzialmente attraverso molti conflitti? Tanto più ciò vale per quegli studenti che poi all’Università proseguiranno nello studio di materie scientifiche, dove, a ragion veduta della formazione alla professione, il tecnicismo prevarrà.

E’ da notare che l’attuale situazione da superare è stata creata da operazioni culturali avvenute nel passato e oggi non più rimesse in discussione, nonostante non siano di onore per la attuale cultura. E’ stata la Rivoluzione francese che, sin dalla Éncyclopédie, ha sostenuto il primato della ragione, al fine positivo di aver la forza d’animo e la forza sociale di abbattere i poteri assoluti che dominavano la società europea. La lotta contro i giganti che i sans culotte (detto modernamente: “i senza potere”) dovevano fare poteva basarsi solo sulla ragione; perciò essi hanno così tanto sostenuto il primato della ragione da farne un assoluto e una Dea.

La successiva restaurazione, che non poteva tornare esattamente alla situazione precedente, prese in contropiede il movimento innovatore: ne accettò il primato della ragione e della scienza, ma lo subordinò al potere sociale esistente. L’aver fatto gli studi all’Università per entrare sia nella ricerca sia nella carriera dell’Università, le riviste che pubblicano articoli di ricerca solo se esaminati da altri colleghi autorevoli, la società degli scienziati, sono tutte caratteristiche che sono nate in quel tempo e che hanno formato quella si autodefiniva la “comunità scientifica”.22 Cosicché, mentre prima i gestori della ragione illuministica erano tutte le persone, compresi i popolani; dopo, i gestori della ragione sono state le comunità degli scienziati; cioè solo le persone autolegittimantesi in gruppo ed autorizzate dal potere sociale, il quale (anche se democratico) dava a quella ragione le direzioni, i limiti e i vincoli. Il tutto all’interno dell’idea che la ragione è unica per tutti (così come aveva creduto la rivoluzione francese, essendo all’inizio del suo uso sociale).

Né poi il sorgere del movimento operaio ha cambiato la situazione. Sia perché esso si è basato più che sulla ragione individuale, sulla ideologia collettiva perché solo essa era scientifica, non quella individuale. Sia perché, Engels, convinto che il progresso avrebbe portato necessariamente alla vittoria del proletariato, ha determinato un’alleanza del movimento operaio con l’ala radicale della borghesia, quella che anticipava quel progresso.23 Al centro di questo accordo, c’era proprio la unicità della ragione. Poi la seconda Internazionale socialdemocratica stabilì che, mentre le scienze sociali erano internamente divise, perché lì c’era l’alternativa scientifica del marxismo, invece la scienza della natura era unica, per proletari e capitalisti. Non si accorse che così la scientificità della ideologia operaia andava a confondersi con una generica scientificità, sulla quale l’accademia poteva giovare a piacimento.

Poi la negli anni ’50 USA e URSS, impegnandosi nella comune gara economica-tecnologica ribadirono la unicità della scienza. Che negli anni ’60 fu contestata dagli studenti, che gridarono “La scienza non è neutrale!”; senza però riuscire ad avere conseguenze istituzionali.

Quindi ci sono precise circostanze storiche che hanno fatto nascere il dogma della unicità della ragione; il quale è rimasto e oggi si mantiene perché non ci sono state mai grosse forze sociali che lo abbiano messo in discussione. Troppi politici oggi preferiscono l’irrazionalismo o il relativismo; e troppi filosofi preferiscono fare la filosofia dei sentimenti.

Fortunatamente da qualche decennio è sorto un movimento ecologico che ha chiesto un progresso diverso, tale che darci una migliore qualità della vita piuttosto che una maggior quantità di vita (consumistica). Nella gente si è diffusa la coscienza che si può e si deve “fermare il progresso scientifico”, come quello delle centrali nucleari (referendum negativi in molti Paesi, a incominciare da quello dell’Austria nel 1976). Si è anche capito che questa nuova politica discende da una innovazione politica radicale del secolo XX: la nascita di un metodo nonviolento nel risolvere i conflitti: prima Gandhi con la liberazione dell’India e poi le liberazioni nonviolente dei popoli dell’Est nel 1989 hanno dimostrato che esiste un’altra razionalità nel risolvere le guerre; una razionalità che è diversa da quella scientifica tecnologica che ha portato alla folle corsa alle armi (ad es. nucleari, ma anche batteriologiche e metereologiche) che minaccia cupamente il suicidio dell’umanità.

D’altronde non era difficile capire che ci sono più razionalità sulla base della esperienza generale: la ragione greca non aveva mai messo in conto la razionalità femminile, che certamente non è quella maschile. E noi l’abbiamo visto in precedenza (par. 5): non la filosofia o la ideologia politica, ma la logica matematica porta a differenti razionalità, formalizzate rigorosamente in logiche diverse e incompatibili tra loro. Le varie scienze pure: la razionalità della termodinamica non è quella della meccanica di Newton.

Ma allora come si sceglie sulla scienza? Lo abbiamo visto considerando i quattro modelli di teoria scientifica. E quale è il risultato di queste scelte? Non l’irrazionalismo, o l’indifferentismo, o la vita dei soli sensi; ma il pluralismo di un numero preciso di razionalità, in accordo con quella enorme esperienza storica che è stata la scienza occidentale; esperienza che, una volta conosciuta nei suoi fondamenti, resta come guida sapienziale per l’umanità.

Ma allora il problema vero non è se la ragione sia unica, ma il suo legame con l’etica (delle scelte). In Occidente la scienza ha sempre subordinato l’etica, invitando la gente a “saper convivere con il progresso” senza resistergli; cioè, ad adeguarsi ad esso anche se comportava profondi cambiamenti di modelli di vita (si pensi ad esempio a come l’ingresso della automobile ha cambiato la vita della gente: così tanto che il suo possesso anticipa e precostituisce il formare la propria famiglia; oppure si pensi a come ha cambiato la mente della gente lo stare quattro ore al giorno (media europea) davanti alla TV, o l’avere un cellulare per passare un gran parte della vita per comunicare con persone lontani; e per dire che cosa?). La giustificazione presentata alla gente che essa deve accettare di buon grado il “costo umano del progresso”, anche se in Italia ci sono 5.000 morti l’anno per incidenti stradali e che ci sono le morti programmate (statisticamente) a causa dell’uso della radioattività in mille applicazioni sociali (ad es. impedire che le patate diano getti). Il tutto giustificato con il fatto che la ragione è unica, quindi la scienza è unica, quindi non ci sono alternative a questo progresso tecnologico e sociale.

Allora il salto culturale che è da fare può essere rappresentato dalla seguente tabella, dove si vedono i due rapporti scienza-etica che si confrontano. Il contrasto dei due atteggiamenti sta tutto sulla collocazione dell’unità: se su una costruzione intellettuale, incomprensibile dai fruitori e incontrollabile dalla società; oppure sul genere umano, e quindi la solidarietà con le persone.

Tab. 3: DUE ATTEGGIAMENTI SU SCIENZA ED ETICA: L’OCCIDENTALE E IL NONVIOLENTO

Occidentale

Nonviolento

SCIENZA

Unità della scienza (tra teorie scientifiche non esistono conflitti irriducibili): “La” scienza Le teorie scientifiche hanno tra loro conflitti che sono irriducibili

CONFLITTO

Ci sono conflitti umani che non sono risolvibili senza distruggere una delle parti E’ impossibile che un qualsiasi conflitto non sia risolubile, data la unità del genere umano

1 Questo punto è stato messo in luce molto bene da A. Koyré: Dal mondo chiuso all’universo infinito, Feltrinelli, Milano, 1970.

2 In proposito è utile l’articolo di P. Cerreta e A. Drago: “50 anni di didattica della fisica, Il tempo nella scuola, 7 (1992) aprile, 14-17.

3 A. Drago e G. Forni: “A chi serve l’insiemistica?” Scuola Documenti, n.14 (1978), 40-48.

4 Anche negli USA l’insiemistica fu di moda. Contro di essa scrisse M. Kline: “Why John does not add”.

5 Una rassegna di questi argomenti, tale da essere presentata agli studenti delle scuole superiori, è in Insegnanti nonviolenti: Matematica della guerra, Ed. Gruppo Abele, Torino, 1987. Per gli insegnanti è utile A. Drago: “La matematica è senza conflitti? Matematica dei conflitti e conflitti in matematica”, Atti Fond. Ronchi, 55 (2000) 243-259.

6 Note bibliografiche su Richardson e alcuni articoli originali sul tema sono in J. R. Newman (ed.): The World of Mathematics, Schuster, New York, 1956, vol.II, 1238-1265. Una biografia scientifica di Richardson: O.M: Ashford: Prophet or Professor?, Hilger, Bristol, 1985.

7 J. von Neumann, O. Morgenstein: Theory of games and economic behavior, Princeton U. P. . I cinquant’anni della nascita di questa teoria sono stati celebrati con l’assegnazione del premio Nobel per l’economia.

8 Di A. Rapoport è classico: Strategia e Coscienza, Bompiani, Milano, 1963. I libro illustra la teoria dei giochi ad un livello più intelligente ed approfondito di quello dei tanti libretti in libreria con questo titolo; ed è anche una applicazione del gioco più famoso, il dilemma del prigioniero, ai rapporti USA-URSS.

9 Questo gioco ha formalizzato il contenuto di una novella (a rigore, la teoria dovrebbe introdurre il gioco giustificando la scala di preferenze rappresentata poi dalla tabella; io qui semplifico, riferendomi ai significati intuitivi che la novella fa associare ai numeri).

10 In letteratura questi paradossi vengono dati per risolti mediante la teoria degli equilibri di Nash. Ma, come lo stesso teorema di Minimax, essa è basata su operazioni non costruttive, che cioè si appellano all’infinito in atto. Vedasi il mio: “Finite game theory according to constructive, Weyl’s elementary, and set-theoretical mathematics”, Atti Fond. Ronchi, 57 (2002) 421-436.

11 A Drago, G. Toraldo: “Il dualismo discreto-continuo nella storia delle teorie matematiche della guerra”, in S. D’Agostino, S. Petruccioli (eds): Atti V Conv, Naz. Storia Fisica, Acc. dei XL, Roma, 1985, 375-382.

12 Un articolo originale è riportato in J. R. Newman: op. cit.. In A. Drago: “La matematica…,”, op. cit., c’è una breve illustrazione. In Insegnanti nonviolenti: op. cit., è riportato un altro caso interessante di statistica dei conflitti.

13 A. Drago e A. Pirolo: “Urto, teorie meccaniche e nonviolenza”, in A. Drago, M. Soccio (ed.): Per un modello di difesa nonviolento, Editoria Univ, Venezia, 1995, 192-208. A Drago e A. Sasso: “Entropia e difesa”, in G. Stefani (ed.): Una strategia di pace: La difesa popolare nonviolento, Fuorithema, Bologna, 1993, 153-162; A. Drago: “Modelli logici, matematici e fisici dei conflitti e delle loro soluzioni”, in M. Zucchetti (ed.): Contro le nuove guerre. Scienziati e scienziate contro la guerra, Odradek, Roma, 2000, 73-81.

14 D. Prawitz and P.-E. Malmnaess: “A survey of some connections between classical, intuitionistic and minimal logic”, in A. Schmidt and H. Schuette (eds.): Contributions to Mathematical Logic, North-Holland, Amsterdam, 1968, 215-229; J.B. Grize: “Logique” in J. Piaget (ed.): Logique et connaissance scientifique, Éncyclopédie de la Pléiade, Gallimard, Paris, 1970, 135-288, pp. 206-210; M. Dummett: Elements of Intuitionism, Claredon, Oxford, 1977. Una mia illustrazione è: “Il ruolo della logica non classica nei fondamenti e nella didattica della scienza”, A. Repola Boatto (ed.): Pensiero scientifico, Fondamenti ed Epistemologia, IRRSAE Marche, Ancona, 1997, 191-209 e “Traduzione, doppia negazione ed ermeneutica”, Studium, 99 (2003) 769-780.

15 S. Freud: “La negazione” (1925), in Opere, Boringhieri, 1980, vol. X; per una interpretazione di questo scritto mediante le doppie negazioni, si veda A. Drago e E. Zerbino: “Sull’interpretazione metodologica del discorso freudiano”, Riv. Psicol., Neurol. e Psichiatria, 57 (1996) 539-566.

16 Si noti che la successiva fondazione dell’analisi, data da Cauchy e Weierstrass, quella di definire il limite mediante la tecnica dell’ε-δ, non ha eliminato affatto l’infinito in atto; vedasi E.G. Kogbetlianz: Fundamentals of Mathematics from an Advanced Point of View, New York : Gordon & Breach, 1968, App. II.

17 Per maggiori particolari si veda il mio articolo: “Lo schema paradigmatico della didattica della Fisica: la ricerca di un’unità tra quattro teorie”, Giornale di Fisica, 45 n. 3 (2004) 173-191.

18 Maggiori particolari nell’articolo di C. Bauer e mio: “Didattica della chimica e fondamenti della scienza”, Atti XI Conv. Naz. Storia e Fondamenti della Chimica, Acc. Naz. Sci. XL, 123, vol. 29, 2005, Torino, 2005, 353-364.

19 Vedansi i lavori S. Cicenia e A. Drago: “Didattica delle geometrie non euclidee: quali proposte?”, Period. Matem., 63 (1987) 23-42; “La logica non classica nella geometria non euclidea di Lobacevskij”, B. Rizzi et al. (eds.): Matematica moderna e insegnamento, Ed. Luciani, Roma, 1993, 434-442; “The organizational structures of geometry in Euclid, L. Carnot and Lobachevsky. An analysis of Lobachevsky’ s works”, In Memoriam N. I. Lobachevskii, 3, pt. 2 (1995) 116-124; La Teoria delle Parallele secondo Lobacevskij (con inclusa la traduzione e cura di I. N. Lobacevskij: Untersuchungen der Theorien der Parallelellineen, Finkl, Berlino, 1840), Danilo, Napoli, 1996,

20 A. Drago: “A.N. Kolmogoroff and the Relevance of the Double Negation Law in Science”, in G. Sica (ed.): Essays on the Foundations of Mathematics and Logic, Polimetrica, Milano, 2005, 57-81.

21 Per maggiori particolari vedasi il mio articolo: “La Tradizionale didattica della Matematica tra astrattismo e strumentalismo”, in G. Ferrillo (ed.): Atti convegno sulla didattica delle scienze, Aversa, 2008 (in stampa).

22 Si veda la eccellente descrizione data da J. Ben-David: Il ruolo dello scienziato nella società, Il Mulino, Bologna, 1974.

23 Marx, che era stipendiato da Engels, non fu d’accordo ed ebbe il coraggio di scriverlo ne La critica del programma di Gotha (1875), Ed. Riuniti, 1974 (Gotha era la città dove c’era il congresso della socialdemocrazia che avrebbe deciso questa alleanza).

CONSIDERAZIONI SULLE GEOMETRIE NON EUCLIDEE del Dott. Antonino Drago, Università di Pisa

Abbiamo ricevuto dal dott. Antonino Drago  i suoi due pregevoli interventi già pubblicati sulla rivista ‘MATEMATICAMENTE‘ e riportati in due files, da inserire direttamente nel nostro Blog. Rimarranno in questo Post separato per qualche tempo per renderli più visibili, poi li inseriremo insieme agli altri in un unico Post (Geometria e Natura) dedicato alle Geometrie  non Euclidee ed altro, secondo il nostro criterio che ‘guarda’ lo stesso oggetto culturale da più punti di vista, per renderlo meglio assimilabile.

Rimaniamo disponibili a inserire nel nostro Blog anche gli altri articoli scientifici che il dott. Drago vorrà inviarci (es., articoli sulla didattica ed epistemologia della matematica e fisica, sull’insegnamento della relatività e della teoria dei quanti…; anche riproporre lavori già pubblicati, se possibile).

Anonimo

tonino drago 1

tonino drago 2 (1)

UN ESEMPIO DI TRASFORMAZIONE DEL PAESAGGIO: CASCINA (PI) dell’accademico dott. prof. Paolo Ghelardoni

Questo articolo è piaciuto al blog Briciolanellatte, come comunicato  il 4-5-2015 da WordPress all’Amministratore con una e-mail 

PREMESSA

DA QUESTA RICERCA ESEMPLARE DI GEOGRAFIA ECONOMICA APPLICATA potremmo ENUCLEARE UN PACCHETTO DI PROTOCOLLI OD UNA SCALETTA DI PROCESSI ‘INSEGNATIVI’ COME GUIDA ALL’ANALISI PAESAGGISTICA DI ALTRI PAESI DELLA TOSCANA E NON SOLO.

Anonimo

——————————————–

Per vedere un parziale curriculum del Prof. Ghelardoni :

GHELARDONI PROF PAOLO_ BREVE CURRICULUM1

Chi vuole vedere l’articolo in odt chiccare su:

PAOLO_GHELARDONI_CASCINA_PAESE

Chi vuole vedere l’articolo in pdf cliccare su:

PAOLO_GHELARDONI_CASCINA_PAESE

ALTRIMENTI:

ghelardoni_foto1

LE TRASFORMAZIONI RECENTI DEL PAESAGGIO A CASCINA (Pisa,Italy)

Dell’Accademico dott. Prof Paolo Ghelardoni, titolare della cattedra di Geografia Economica (Università di Pisa)

Uno dei problemi sempre più avvertiti dalla pubblica opinione è la trasformazione del paesaggio nel proprio territorio e di conseguenza i tentativi per proteggerlo. La necessità di salvaguardare il paesaggio era già stata considerata fondamentale dai nostri padri costituenti in quanto l’articolo 9 della Costituzione Italiana recita: “La Repubblica promuove lo sviluppo della cultura e la ricerca scientifica e tecnica. Tutela il paesaggio e il patrimonio storico-artistico della nazione”. Ed anche il nuovo Titolo Quinto della Costituzione assegna allo stato la tutela dell’ambiente, dell’ecosistema e dei beni culturali (tit..117). Anche per la Convenzione Europea del Paesaggio, questo deve essere integrato nelle politiche di pianificazione del territorio; vi deve partecipare il pubblico, tanto che vi è chi parla di paesaggio democratico, cioè di paesaggio che appartiene a tutti (costruito con l’apporto di tutta la popolazione). Per questo è necessario accrescere la sensibilità della società civile al valore del paesaggio; si devono promuovere ricerche sistematiche volte a conoscere il proprio territorio tenendo conto dei valori attribuiti dalle popolazioni interessate.

Per parlare del paesaggio è necessario fornirne una definizione, anche se non è facile darne una che sia veramente completa e accettabile da tutti. Ad esempio per i turisti innamorati della Toscana, il paesaggio toscano viene definito bello, armonioso, meraviglioso, dai bei colori mutevoli con le stagioni; questo perché è basato su un ideale di vita felice, di un idillio agreste e mitico ispirato al Rinascimento di cui la nostra regione conserva tante memorie architettoniche. Se dobbiamo darne una definizione generalmente accettata, il paesaggio toscano è quello “dove l’opera dell’uomo si è impressa in una solida architettura rurale di linee sobrie ed eleganti, in una secolare sistemazione dei campi che filari di viti e olivi dividono in una trama ordinata, opera della mezzadria alla quale sono legati gli ordinamenti colturali, le dimore ed altri aspetti paesistici; la viabilità, data da una rete di piccole strade, con filari di cipressi nei viali di accesso alle case e alle ville, completa il quadro caratteristico”. Questo è il concetto generale del paesaggio toscano che si manifesta nelle forme più tipiche nelle zone collinari della regione.

Siamo quindi in un paesaggio umanizzato, in cui l’uomo ha trasformato gli aspetti naturali in un territorio derivato con campi, strade, corsi di fiume deviati, boschi mutati nelle loro essenze. Dove si è avuto un fitto popolamento il quadro originario è quasi completamente scomparso. Il paesaggio umanizzato diventa un documento di cultura di quella popolazione che lo ha elaborato nel tempo. Occorre d’altra parte precisare che il paesaggio naturale, quello rimasto intatto e prezioso da ricercare e da conservare è oggi praticamente inesistente; si può trovare in limitate aree dell’Appennino (es. alcune zone delle Foreste Casentinesi) o in alcuni Parchi Alpini.

Nel complesso generale di quello toscano, quello del comune di Cascina rappresenta un tipo particolare di paesaggio della pianura.

Come impianto generale, almeno dal punto di vista fisico, in quest’area occorre risalire alla Centuriazione Romana. Come è noto, i Romani quando avevano conquistato un territorio, per accentuarne il possesso e l’autorità, vi insediavano i militari che lo avevano conquistato; e l’insediamento avveniva con un perfetto sistema agrimensorio basato sulla suddivisione del terreno in centurie, corrispondenti a quadrati di 710 metri di lato (mezzo miglio romano), affidate ad un singolo soldato; ai lati della centuria si aprivano le terre comuni, cioè strade, scoli, fossi; nella piana di Pisa questa suddivisione si è verificata nel I-II secolo a.C. Ed è ancor oggi ben rintracciabile nella topografia dell’area, anche se ben poche sono le “immaginette” (o marginette) le figure votive collocate nei secoli passati agli incroci tra i cardines e i decumani, quali invocazioni per la protezione dei lavori agricoli; talvolta queste testimonianze sono state tolte perché intralciavano la “libera” edificazione o si trovano ubicate nelle mura di una abitazione. La prosecuzione della centuriazione sulla riva destra dell’Arno e la sua scomparsa in alcune aree presso il fiume stesso ci testimoniano le variazioni del suo corso.

Nel corso dei secoli l’insediamento umano, il sistema della proprietà, dell’amministrazione, l’economia agricola si sono profondamente modificati per guerre, trasformazioni politiche, ordinamenti economici diversi. Tuttavia di quel periodo si sono mantenute le fondamentali strutture del territorio per quanto riguarda alcuni nuclei d’insediamento, la rete stradale minore, l’orientamento dei fossi, la regolazione dei corsi d’acqua (ne sono esempi il Fosso Ceria, il Fosso della Mariana, il Fosso del Nugolaio, il Fosso di San Lorenzo a Pagnatico, tutti orientati nel senso meridiano della centuriazione, diretti verso le aree a quote più basse della piana di Pisa).

Con il Granducato di Toscana si consolida l’asse viario Pisa-Firenze (la Tosco-Romagnola) che si discosta dalla centuriazione per un tracciato più breve tra questi due centri importanti. Lungo questa strada si collocano gli insediamenti più recenti, con gli edifici più importanti e le residenze dei proprietari terrieri.

Infatti una volta realizzatosi il Granducato di Toscana, molti ricchi commercianti e borghesi prevalentemente fiorentini investirono i loro guadagni nello sfruttamento delle terre toscane, dapprima intorno a Firenze poi gradualmente in tutta la Toscana. Nel comune di Cascina varie ville-fattoria e palazzi segnarono l’insediamento di queste famiglie gentilizie che possedevano grandi aziende agricole; ma vi era anche un gran numero di piccole e piccolissime proprietà; nelle grandi dominava il metodo della mezzadria per la valorizzazione agricola del territorio . Come è noto con questo sistema il proprietario del fondo agricolo finanziava la costruzione della casa rurale, le sementi, le attrezzature, il bestiame, mentre la famiglia del mezzadro forniva il lavoro; al raccolto si aveva la divisione a metà. Questo sistema aziendale ha improntato il paesaggio toscano tipico caratterizzato dalla casa rurale sul fondo, dalla coltivazione di vite e olivo tipica delle zone collinari, dallo sfruttamento intensivo di tutta la terra disponibile con colture alternate in grado di fornire sostentamento alla famiglia e con il lavoro esteso ai 365 giorni dell’anno ; non molto diversa è stata l’organizzazione del lavoro nella piana di Pisa e quindi nel comune di Cascina, almeno nella sua parte più fertile, quella centro-nord.

Nel Cascinese la mezzadria, insieme ad una consistente parte di piccoli proprietari terrieri, era fortemente sviluppata a partire dal Sette-Ottocento. L’insediamento era basato sulla casa rurale, un edificio generalmente in muratura a due piani collegati da una scala esterna, con a piano terra la stalla, il magazzino, la carraia, il forno, la tinaia, mentre al primo piano si trovavano la cucina e le camere (diverse per alloggiare una o più famiglie di solito numerose). Il terreno, in prevalenza suddiviso in stretti rettangoli separati da fossi, annoverava la coltivazione di cereali (con filari di viti ai margini), di ortaggi, di frutteti e di vari prodotti che fornissero alimentazione per tutto l’anno.

Nel territorio cascinese con la costruzione della ferrovia Leopolda alla metà dell’Ottocento si accentuò una sorta di separazione tra la parte meridionale, caratterizzata da estesi campi coltivati a cereali e radi insediamenti e quella a nord della ferrovia con terreni più parcellizzati ad agricoltura intensiva con elevata densità abitativa; le buone produzioni di grano venivano in parte esportate attraverso il porto di Livorno.

Progressivamente la mezzadria, soprattutto dopo la seconda guerra mondiale, non risultava più corrispondente allo spirito dei tempi; il lavoro stava diventando sempre più importante, per cui la suddivisione dei raccolti era pian piano passata al 60% per i mezzadri e 40% ai proprietari; il lavoro nell’industria e nel terziario, con un reddito sicuro e con ferie pagate, rispetto a quello nell’agricoltura, attirava principalmente i giovani, anche perché considerato socialmente più dignitoso di quello dei campi. Tutto questo ha prodotto una fuga dalle campagne soprattutto negli anni Sessanta e Settanta anche per la stessa abolizione del contratto di mezzadria (1964). Quindi anche nel cascinese l’abbandono delle campagne è stato molto consistente in quegli anni.

Il comune di Cascina ha visto progressivamente diminuire gli addetti all’agricoltura (fino al 1961 era un comune prevalentemente agricolo) per diventare un comune ormai centrato sui servizi, oltre ad aver attraversato un periodo caratterizzato da un fiorente sviluppo del mobilificio. In effetti prima della seconda guerra mondiale e negli anni immediatamente successivi questo comune era celebrato soprattutto per questa attività con “mobili in stile” che caratterizzavano la sua produzione di buon livello.

Tuttavia, se molti cascinesi si trasformavano in lavoratori dell’industria e dei servizi e si trasferivano nelle città sedi del lavoro (Pisa, Livorno, Pontedera), la popolazione di Cascina aumentava per effetto del bilancio naturale, cioè i nati superavano consistentemente i morti; inoltre negli anni Cinquanta e Sessanta si è verificata anche una immigrazione di sostituzione dovuta soprattutto ad agricoltori provenienti dalle colline a sud della provincia, ma anche da altre regioni, come i marchigiani in un primo tempo e successivamente siciliani e sardi, per cui i residenti aumentavano ad un ritmo sostenuto, tanto che questi dai 29 mila del 1951 superano i 38 mila già nel 2001.

Questo incremento demografico è stato quasi regolare nell’intervallo considerato; in pratica si è avuto un incremento intercensuario in media di 2000 residenti; ma negli ultimi anni l’aumento dei residenti è stato più consistente tanto che al 2011 i residenti sono 44.553 quindi oltre 6.000 in più del precedente censimento e poi 45.320 al 31 dicembre 2014. Fino al 1975 il bilancio naturale era positivo, poi da quell’anno il tasso di mortalità è stato sempre superiore al tasso di natalità. L’incremento negli ultimi anni del numero dei residenti è dato essenzialmente dal prevalere degli immigrati sugli emigrati con valori consistenti del tasso di immigrazione negli ultimi dieci anni. E’ il comune di Pisa che fornisce circa il 40% dei nuovi residenti a Cascina, seguito da quello di San Giuliano con valori vicini al 10%.

In conseguenza Cascina risulta il comune più densamente abitato della provincia di Pisa.

La piramide delle età dei residenti mostra una massima consistenza nelle classi dai 35 ai 50 anni e una forte strozzatura delle classi giovanili inferiori ai 25 anni negli anni Ottanta, con un chiaro riferimento alla diminuzione della natalità che rimane costantemente bassa con una debole ripresa negli anni recenti dovuta significativamente alle nascite dei cittadini stranieri.

Questi ultimi costituiscono oltre il 7% degli abitanti (rispecchiando la media nazionale) ed hanno fatto registrare un incremento consistente nelle residenze con una variazione significativa nelle componenti nell’ultimo decennio; se infatti nel 2002 erano i Senegalesi (380) a prevalere sugli Albanesi (238) seguiti dai Marocchini, al 31 dicembre 2014 sul totale degli stranieri (3.464) gli Albanesi sono quasi un terzo (990) seguiti dai Romeni (640), dai Senegalesi (391), dai Marocchini (382) e poi dagli Ucraini (119), con una prevalenza delle femmine tranne che per gli Albanesi.

Negli anni Sessanta e Settanta dal comune di Pisa provengono quasi un terzo dei nuovi immigrati, mentre Campania e Sicilia dominano fra le provenienze degli immigrati di altre regioni. Si stava verificando un ridimensionamento degli addetti all’agricoltura e si espandevano gli insediamenti produttivi del settore mobiliero e di altri comparti, in particolare quello della maglieria. Il comprensorio del mobile, che aveva in Cascina il suo centro principale con la produzione di mobili di tipo artistico-artigianale, riusciva a sfondare sul mercato interno e su quello internazionale per un suo “stile” ben conosciuto, ma dagli anni Ottanta la sua produzione prevalentemente artigianale basata su microaziende, priva di ricambio generazionale e di programmazione, non reggeva più alla concorrenza basata su moderne strutture di centri di vendita e di esposizione; in tal modo una fonte di lavoro su cui contava Cascina veniva a ridursi drasticamente obbligando alla ricerca di nuove forme di impiego.

Data da quegli anni la “questione mobile” a Cascina, a cui aveva cercato di favorire il rilancio l’Amministrazione Comunale con il “progetto legno” per dare continuità a questa produzione e sviluppando una commercializzazione dei prodotti attiva anche a livello internazionale; tuttavia i vari progetti sono naufragati nel generale atteggiamento individualistico degli artigiani cascinesi gelosi della propria autonomia, non comprendendo la necessità di superare le congiunture sfavorevoli mediante associazionismo e cooperativismo e facendosi sfuggire grosse opportunità di rilancio internazionale ( come avvenne con la richiesta di una grossa commessa di ambienti per le olimpiadi di Mosca del 1980 lasciata perdere per indecisione). Anche grazie a questa riduzione dell’attività tipica di Cascina si aveva quindi la trasformazione del territorio comunale in centro rivolto particolarmente alle attività terziarie con i relativi impieghi.

In sintesi sono queste le trasformazioni del sistema economico cascinese che si sono succedute nel dopoguerra: -rapido sviluppo industriale e arretramento dell’agricoltura (1950-60); -primi cenni del rallentamento delle produzioni mobiliere (1960-70); – fase di declino industriale (anni Ottanta); – rapido sviluppo del settore terziario con forte rilancio del commercio (1990-2000); mantenimento del settore commerciale con ristagno occupazionale (2000- 2014).

La forte riduzione dell’agricoltura incide sul paesaggio agricolo che si trasforma da una struttura costituita da stretti campi rettangolari ad una con larghe superfici irregolari, più adatte ad una agricoltura meccanizzata. La conduzione diretta con salariati e compartecipanti raggiunge il 95% con una forte riduzione delle aziende che nel comune dalle 1637 del 1970 si riducono a 560 nel 2000; nello stesso arco di tempo la superficie agricola scende da 5420 ha a 4250 (tesi Valbona). Negli ultimi decenni in sostanza si registra la prevalenza di microaziende, ma è in aumento la grande superficie aziendale (oltre i 50 ha), con forme colturali di tipo estensivo e prevalenza di part-time.

Anche il comune di Cascina ha quindi registrato il fenomeno dell’urbanizzazione, cioè l’aumento consistente della popolazione delle città e dei centri abitati più cospicui per l’attrazione da questi esercitata sulle aree vicine per la presenza di maggiori servizi di ogni tipo, più facilità di impiego, più attrattive per il tempo libero, più vita moderna.

L’incremento dei residenti non ha interessato solo il centro storico di Cascina e il suo intorno immediato, ma data la facilità di comunicazioni (treno, autobus, buona rete stradale) un consistente sviluppo edilizio si è registrato tra Pisa e Cascina, combinandosi l’espansione pisana con quella del nostro centro; si è quindi poco per volta occupato ogni spazio edificabile da ambedue i lati della Tosco-Romagnola, poi lungo il reticolato ancora evidente della centuriazione, colmando in gran parte lo spazio compreso tra la golena dell’Arno e la ferrovia per Firenze, in molti casi superandola verso sud, in particolare dove già si trovavano nuclei abitati storici, come Titignano, Visignano, San Prospero, San Lorenzo a Pagnatico, Marciana e Latignano. Questo continuum abitativo è stato definito da alcuni come la “conurbazione Pisa-Pontedera”, in quanto anche oltre Cascina e fino a Pontedera non c’è quasi soluzione di continuità nello sviluppo edilizio. Dal 1951 al 2011 la superficie comunale urbanizzata aumenta del 77%, particolarmente nei poli di Navacchio e di San Frediano (tesi Valbona.).

CONURBAZIONE_PIANA_PISA

Poco per volta le trasformazioni edilizie portano al ridimensionamento di quella che rappresentava la struttura urbanistica delle frazioni componenti il comune di Cascina, la “corte”, che ha origini assai lontane nel tempo, come dimostrano i toponimi ricorrenti in questa zona,ad es. San Lorenzo alle Corti, Case Corti, Via di Corte, ecc. Questa struttura, tipica delle zone rurali, si caratterizza per l’orientamento a sud dei vani e per la presenza di spazi interni alla corte, un tempo adibiti ad uso agricolo. Ed essa segna le caratteristiche di quasi tutti gli edifici più antichi, tanto che anche i numerosi palazzi padronali, presenti nella zona, mantengono generalmente lo schema a corte, con un ingresso principale sulla pertinenza ed uno di servizio. Tuttavia diventando esclusivo luogo di residenza, la fisionomia originaria si è perduta; spesso il frazionamento della “corte” ha trasformato il complesso in case “a schiera”, eliminando uno degli elementi caratteristici di tale struttura, lo spazio comunitario di pertinenza; quando non si sono stravolte del tutto le caratteristiche tipiche della struttura ricavando terrazzi di aspetto stridente o trasformando la carraia in salone con infissi improbabili.

Buona parte della domanda insediativa si rivolge verso nuove abitazioni, ma c’è anche una netta tendenza al riuso del patrimonio storico esistente e alla ristrutturazione di edifici del dopoguerra, anche per le restrizioni imposte all’eccessiva edificazione.

Il più recente Piano Strutturale, per salvare almeno ciò che resta del paesaggio agricolo, ha stabilito la permanenza di fasce verdi longitudinali intermedie all’insediamento definendole “invarianti”, quindi territorio non edificabile, una sorta di intervallo, varchi agricoli, nel continuum edificato.

Questa crescita demografica e conseguentemente edilizia del comune di Cascina, che si accentua negli ultimi 20 anni, è motivata da un successivo fenomeno demografico: la controurbanizzazione. Dopo la forte corsa alla città degli anni Sessanta e Settanta, a partire dagli anni Ottanta si verifica un movimento inverso; la popolazione cittadina si allontana dai grandi centri abitati perché cominciano a svilupparsi fenomeni negativi che inducono alla fuga dalla città. Il consistente sviluppo edilizio dei decenni precedenti ha provocato una eccessiva cementificazione; il forte incremento della motorizzazione ha provocato un traffico notevole portatore di inquinamento, rumore, vita convulsa, difficoltà di relazioni; anche lo sviluppo della microcriminalità ha generato insicurezza. La ricerca di una vita ambientale migliore induce a rivolgersi alla campagna per soddisfare un bisogno di verde, di vita tranquilla, di abitazioni più ampie preferibilmente con giardino, di assenza di rumori e di inquinamento; quella che viene definita “una vita a misura d’uomo” . E’ quindi per queste motivazioni che la città di Pisa inizia a perdere abitanti; dopo aver toccato il massimo nel 1981 con oltre 104 mila residenti, in trenta anni scende a poco più di 86 mila. Questa diaspora si spande sui comuni limitrofi, Vecchiano, San Giuliano, Calci in piccola parte, ma in maggior consistenza su Cascina.

Dal dopoguerra agli inizi del XXI secolo la struttura della popolazione attiva cascinese ha subito cambiamenti profondi. Se nel complesso lievissimo è stato l’aumento percentuale degli attivi, si è registrato un crollo del settore primario passati dal 34,6 % nel 1951 al 2,1 % del 2001, con il settore secondario passato dal 41,9% al 31% nello stesso intervallo di tempo, mentre gli attivi del terziario sono passati dal 18,9 % al 59,5%; confermando il rapido sviluppo del commercio tra gli anni Novanta e l’inizio del secolo successivo.

L’incremento delle abitazioni si sviluppa come un’onda che procede dal confine del comune di Pisa per portarsi progressivamente verso il centro di Cascina e oltre, scavalcando ben presto la ferrovia a sud in quello che era il dominio quasi assoluto dei campi.

Questo sviluppo tumultuoso dell’edilizia nel nostro comune ha trasformato decisamente il paesaggio. Nei primi anni della crescita demografica dei comuni della piana di Pisa si assiste ad una speculazione selvaggia; fino al 1973 si può costruire derogando dalle regole, per cui si costruisce quasi ovunque con piani regolatori sommari o inesistenti, non tenendo alcun conto del paesaggio esistente. L’aspetto edilizio tipico costituito da abitazioni con due piani fuori terra vede svilupparsi frequenti case a 3 o 4 piani, ma talvolta anche a 6 piani fino a 9 (quasi dei minigrattacieli); si sono costruite nuove strade con carreggiata più ampia di quelle precedenti; si è registrato l’insediamento di nuove industrie pur concentrate in ampie zone artigianali e industriali (tra Cascina e l’Arnaccio e nella zona del Nugolaio dalla ferrovia alla superstrada) e ampie zone commerciali; la centuriazione in molte zone è stata cancellata (rimangono solo alcune delle marginette più grandi), molti fossi sono stati colmati; gran parte delle case tipiche della mezzadria sono state trasformate in villette adattando alcuni vani alle esigenze moderne (spesso la carraia modificata in ampio salone vetrato), talvolta con alti muri di cinta, mentre nelle aree più isolate le case rurali sono state abbandonate alla rovina.

ghelardoni foto 2

ghelardoni foto 3

Fortunatamente si sono salvate dal degrado molte ville storiche abbastanza frequenti nel nostro territorio, generalmente ristrutturate ma conservandone l’aspetto originario. Sono infatti molte le ville o fattorie costruite generalmente nell’Ottocento dai proprietari terrieri più benestanti che i discendenti hanno provveduto a mantenere senza eccessivi ammodernamenti.

Il paesaggio agrario risulta notevolmente trasformato e notevolmente ridotto rispetto alla situazione dell’immediato dopoguerra; la trama dei campi rettangolari stretti e allungati ,separati da piccoli fossi con filari di viti o di alberi da frutto sul confine, è ora caratterizzata , come si è detto, da ampie estensioni, prive di fossi e di piante legnose, più adatte ai mezzi meccanici con più uniformità di colture; queste talvolta hanno visto l’introduzione di nuove specie estranee alla tradizione contadina locale, promosse dalla Politica Agricola Comunitaria e facilitate da incentivi (come la coltura del girasole). La caratteristica varietà di colture tipica dei tempi della mezzadria, è ora sostituita da poche varietà più valide commercialmente, data anche la nuova struttura proprietaria dei campi.

Alcune aree del territorio cascinese, meno adatte alle coltivazioni, nei decenni passati con il boom edilizio sono state utilizzate come cave per la fornitura di argilla per alcune fornaci di laterizi o per estrarne sabbia; ridottasi la richiesta per il rallentamento delle nuove costruzioni, molte di queste cave (tranne i pochi esempi di laghetti per la pesca) sono state trasformate in discariche abusive e solo parzialmente ripristinate a norma di legge, comunque aree generalmente perdute come suolo coltivabile.

La trasformazione più consistente è quella che ha interessato il territorio compreso tra Visignano e il casello della superstrada di Navacchio, un’ampia fascia rettangolare limitata ad est dalla strada del Nugolaio mentre ad ovest tende ad allargarsi nella zona in vicinanza della superstrada. Qui si sono insediate da tempo attività artigianali nella parte settentrionale a partire dalla ferrovia, ma negli ultimi quindici anni si sono estese, con ampie superfici, le attività commerciali. Per primi si sono trasferiti in quest’area due grandi magazzini, sorti inizialmente a Titignano lungo la Tosco-Romagnola nella forma un tempo caratteristica di “stalle” (Cipolli e Desio & Robè), ampliatisi lungo la Via del Nugolaio (Mercatone Uno l’ex Cipolli e il nuovo Desio & Robè); successivamente la zona ha registrato notevoli afflussi di clientela con la costruzione dell’ipermercato Ipercoop, nel cui edificio si sono ubicati anche Obi e Unieuro; negli ultimi anni come altre strutture commerciali si sono poi avuti gli insediamenti di “Mondo Convenienza “, di “Decathlon” , di “Maisons du monde”, di “Piazza Italia”, di “Iper Moda Factory”, di “Arcaplanet”, di centri di fitness, di carrozzerie e alcuni magazzini all’ingrosso.

Questa concentrazione di attività commerciali e di servizio in quest’area trova motivazione sia nella facile raggiungibilità per strade e per superstrada con possibilità di ampi parcheggi, sia nella sua localizzazione nella zona centrale di un territorio che ha, a trenta/quaranta minuti di percorso auto, i centri di Viareggio, Lucca, Pontedera, Collesalvetti e Livorno con il loro ampio intorno; in sostanza l’area commerciale del Nugolaio può essere raggiunta da un bacino di utenza potenziale che si avvicina ai 500 mila clienti. In alcuni periodi dell’anno, particolarmente dedicati allo shopping, l’afflusso di auto congestiona tutta l’area e rende evidente la forte attrattiva commerciale di tutto il complesso.

Cascina, in effetti, è diventata insieme a Pisa (la zona commerciale del Nugolaio dista 6/7 chilometri dalla città) la zona baricentrica dei servizi dell’Area Vasta della costa toscana.

La crescita della superficie urbanizzata pur nella frammentazione degli insediamenti ha dato luogo alla formazione di una gerarchia territoriale, di cui possiamo distinguere due livelli. Un primo è dato dai centri principali lungo la Tosco romagnola già consolidati negli anni Cinquanta come Navacchio-Casciavola, San Frediano e Cascina, cresciuti e densificati anche per mezzo delle intersezioni stradali. La gamma di servizi urbani qui presenti è molto ricca e vede continuamente svilupparsi nuove forme attrattive quali servizi di ristorazione (bar, ristoranti e pizzerie), negozi di abbigliamento, agenzie immobiliari, sportelli bancari, scuole, servizi alla persona, palestre e fitness.

Un secondo livello è dato da una quindicina di centri minori sviluppatisi nelle intersezioni stradali più lontane dalla Tosco-romagnola, dotate di un minor numero di servizi, con la diffusa struttura delle villette a schiera; per molti di questi centri l’espansione è dovuta all’ampliamento di un piccolo nucleo storico originario.

Si è generata così una città reticolare articolata sul tracciato della centuriazione col massimo degli insediamenti tra l’Arno e la ferrovia per Firenze.

Potremmo considerare questo processo di espansione col termine di sprawl considerato come fenomeno di crescita urbana non pianificato (guidato dal mercato o abusivo) in cui la città, in questo caso di non grandi dimensioni, si espande fisicamente nel proprio intorno, che ha carattere agricolo, attraverso forme di insediamento a bassa densità, discontinue nello spazio, miste urbano /rurale.

Questa forte espansione edilizia ha determinato un consistente consumo di spazio agricolo con conseguenze importanti dal punto di vista ambientale. Generalmente oggi l’agricoltura viene considerata un’attività che oltre a produrre risorse alimentari ha anche la funzione di mantenere l’ambiente senza stravolgerlo; in sostanza l’agricoltore conosce le buone pratiche di conservazione dell’ambiente e quindi svolge oggi anche la funzione di “curatore dell’ambiente”.

Inoltre si diffonde sempre più il concetto di “impronta ecologica”, che viene definito come “la superficie agricola produttiva necessaria ad ogni essere umano per vivere, consumare e assorbire i rifiuti prodotti”. Ed anche se i calcoli per misurarla sono complessi e vengono spesso aggiornati con nuovi parametri, si calcolano in 4,2 ettari quelli necessari ad ogni persona per la propria impronta ecologica; ma in Italia già da tempo tale produttività è di soli 1,5 ettari pro capite, quindi il nostro paese è fortemente deficitario per questo aspetto e purtroppo il consumo di spazio agricolo per l’espansione edilizia e commerciale continua in maniera esponenziale. Alcune statistiche ci confermano che nel nostro paese si consumano in media 43 ettari di terreno al giorno con conseguente riduzione delle produzioni agricole. Stenta ancora a diffondersi il concetto che la terra è un “bene comune”, un bene primario a cui deve avere accesso chiunque.

La terra è un bene inestimabile necessario per lo sviluppo sostenibile; dobbiamo lasciare quindi ai nostri discendenti un territorio non troppo diverso da quello che ci hanno lasciato i nostri padri.

Bibliografia.

Gianni G.-Quercioli C., Il comune di Cascina. Pisa,Felici Editore,2001.

Valbona F.,Crescita e diffusione urbana nella piana di Cascina.Tesi in Urbanistica, Univ. di Empoli,2010.

Redi F.,Cascina I.Edilizia medievale e organizzazione del territorio. Pisa,Pacini,1984.

Pasquinucci M.-Garzella G.-Ceccarelli Lemut M.L.,Cascina II.Dall’antichità al Medioevo. Pisa, Pacini,1986.

Pazzagli R.,Cascina III. Economia e Socità dal ‘600 al ‘900. Pisa, Pacini,1985.

Cristiani Testi M.L.,Cascina IV. L’arte medievale a Cascina e nel suo territorio. Pisa, Pacini, 1987.

Mazzanti Re., Lineamenti di geomorfologia della pianura di Pisa. In Pisa e la sua Piana a cura di Cecchella A. e Pinna M., vol.I.Pisa, C.S.E.F.,1997.

Granchi S. (a cura di), Cascina: la città il territorio. Pontedera, Bandecchi e Vivaldi,1993.

Dott. Prof. Paolo Ghelardoni

(docente di ruolo all’Università di Pisa)

DEL DOTT. PROF. PAOLO  GHELARDONI  POSSIAMO LEGGERE SU QUESTO BLOG ANCHE:

“GEOLOGIA DEL PAESAGGIO, INSEDIAMENTO UMANO IN VAL di CECINA”

INSEGNAMENTO DELLA FISICA: una riflessione sulle possibilità educative e di insegnamento della fisica nelle intersezioni Scuola Media-Scuola Superiore, Biennio-Triennio; del dott. Piero Pistoia, docente di ruolo in fisica

CURRICULUM DI PIERO PISTOIA:

piero-pistoia-curriculum

Questo articolo è piaciuto al blog  che ha spedito una mail all’Amministratore

Questo articolo è piaciuto al blog Briciolanellatte come comunicato il 4-5-2015 da WordPress all’Amministratore con una mail 

PREMESSA

Questa relazione, scritta nei lontani anni ’80, come contributo ad un tentativo sperimentale di auto-aggiornamento, vuole ricordare che il ‘mestiere’ dell’insegnante è estremamente complesso; oggi chi pensa che basti conoscere in profondità le ‘cose’ da insegnare (certamente condizione necessaria per questo lavoro), per essere, non dico ottimo ma solo un buon educatore, non è neppure a metà strada (condizione sufficiente). Ogni insegnante di fisica dovrebbe almeno essere in grado di ‘maneggiare e espandere’ con disinvoltura i problemi, i concetti e le teorie, in questo lavoro accennati, ma riferiti al Mondo 3 di Popper aggiornato al 2015! e non è poco.

Dott. Piero Pistoia, docente di ruolo in Fisica

————————————————–

RIASSUNTO

Questa memoria cerca di affrontare le problematiche inerenti l’insegnamento in generale delle Scienze e in particolare della Fisica nei primi livelli scolastici (zona di intersezione-interazione Scuola Media – Biennio superiore, Biennio – Triennio, anche alla luce di eventuali modifiche apportate dalle nuove riforme.

Dopo aver individuato le finalità principali dell’insegnamento, attraverso un’analisi delle esigenze sociali ed una riflessione circa le strutture mentali, per un efficace proseguimento negli studi e per un inserimento critico nel mondo sociale, si è riconosciuto nei processi di costruzione disciplinare delle Scienze s.l. e in particolare della Fisica come tali finalità possano essere soddisfatte e precisate. Come in qualsiasi progetto insegnativo, si viene poi a delineare lo stato cognitivo, precisando come, nel dare importanza alla zona di frontiera dell’apprendimento, sia possibile con la mediazione culturale, spostare il confine verso apprendimenti personali sempre più simbolici, muovendoci attraverso l’articolarsi delle unità didattiche.

In una visione largamente curricolare e per una richiesta interdisciplinare, si vengono ad analizzare i tre rapporti fra insegnamento della fisica e 1) problemi sociali, 2) tecnologie, 3) altre discipline, individuando “oggetti” a diversa valenza educativa da somministrare nella zona di frontiera.

I processi che avvengono nella zona di frontiera sono omologhi alla sequenza epistemologica P1-TT-EE- P2 – più volte nominata e descritta in articoli dello stesso autore riportati sul blog – proprio per la postulata coincidenza del logico (strutture disciplinari) con lo psicologico (stato mentale dello studente), per cui un insegnamento di frontiera si prefigura come quello che dà spazio all’intermezzo fra teoria ed esperimento.

Si progetta infine una scheda guida da somministrare nell’inter-confine che dovrebbe spingere verso l’estremo superiore l’apprendimento della fisica.

————————————————-

PARTE PRIMA

FINALITA’ EDUCATIVE INDIVIDUABILI NEL BIENNIO DELLA SCUOLA SUPERIORE

Per il biennio, assimilato in qualche modo alla Scuola dell’Obbligo, si porrà il problema di quali contenuti, metodi, atteggiamenti e valori si vorrà che la scuola comunichi ai futuri cittadini. Almeno due saranno gli aspetti rilevanti del problema: 1°) permettere l’inserimento critico nella società degli adulti, per chi abbandona la scuola, 2°) fornire una preparazione strutturale di base (contenuti-metodi minimi) per chi vorrà continuare gli studi.

I due aspetti prima accennati acquistano allora una precisazione semantica:

I problemi politico sociali più urgenti del mondo di oggi in cui l’alunno si troverà coinvolto (crisi energetica, trasmissione delle informazioni, problemi ecologici, produzione di materiali e apparecchiature varie, la droga, la crisi dei miti…. per non parlare della globalizzazione e del potere mondiale delle banche), connotati da una chiara matrice tecnologico scientifica, sono filtrati attraverso l’indifferente e rigido vaglio delle esigenze tecniche ed economiche, alienanti, reificanti e aberranti, e sempre meno dall’apporto più fecondo e critico della scienza. Le stesse informazioni ed i messaggi relativi ai detti problemi provenienti dall’esterno della scuola (mass-media; divulgazione scientifica…), tradotti più o meno bene in teorie del senso comune, o comunque rimasti a livello frammentario dell’analisi scientifica, sono facilmente controllati dai principi di autorità, falsando soluzioni e prospettive. I due aspetti prima accennati acquistano allora una ulteriore connotazione semantica:

1°) è necessario preparare a controllare l’informazione, operando su di essa processi di codificazione e decodificazione in funzione dei diversi modelli razionali, prendendo sempre più consapevolezza che i significati dei messaggi acquistano chiarezza solo se inseriti in una struttura teorica di spiegazione previsione che rimanda sempre a processi di controllo-falsificazione (non controllo-verifica!) per vederne i limiti in una sempre più profonda ‘verosimiglianza’ popperiana (la spiegazione e la previsione si fanno su modelli); 2°) è necessario fornire le basi strutturali del sapere umano, articolato in discipline attraverso eredità di generazioni, viste come modi peculiarmente umani di ‘guardare ‘ il mondo, permettendo la costruzione di modelli culturali complessi con cui sia possibile spiegare e prevedere, sottolineando attraverso i metodi di genesi delle strutture, come essi, proprio perché caratteristici dell’uomo, siano sempre permeati di valori antropologici, cioè, attraverso il riconoscimento della dignità della cultura umana, di rispetto profondo per l’appartenente alla stessa specie, rispetto profondo per gli esseri viventi e non viventi, nella consapevolezza di una unità cosmica, recuperata dalle teorie dell’evoluzione [2] (costruzione di modelli efficienti).

Se è vero che i modelli razionali si costruiscono per la soluzione di problemi prima ed al di là dell’intervento concreto (esperienza-esperimento), si dovranno in ambedue i casi fornire alla mente gli strumenti necessari perché si veda la realtà in termini problematici e si sviluppino le procedure atte alla soluzione di problemi. Due in definitiva sembrano essere le esigenze educative della società moderna e ancora i due aspetti iniziali possono essere tradotti di nuovo ed ampliati: 1°) data la rapida obsolescenza delle situazioni e delle tecnologie (così come richiesta dalle teorie sociali predominanti), dobbiamo essere in grado non solo di capire, ma anche e specialmente di controllare i cambiamenti tramite la costruzione di modelli efficienti (aspetto funzionale dell’educazione); 2°) dobbiamo cercare una dimensione dell’uomo in senso più antropologico, cioè cercare di sviluppare i suoi poteri mentali in tutti i loro aspetti, riscoprire le ‘risonanze’ più strategiche dei processi di conoscenza, cogliere e rispettare i rapporti talora delicati fra i diversi enti dell’universo e ritrovare i valori propri dell’umanità nelle strutture della cultura (aspetto formativo dell’educazione).

Chiaramente le mete educative indicate esigono una rivalutazione dell’aspetto creativo, divergente dell’intelligenza, non riduttivamente analogo all’immaginazione vuota o all’intuito tout-court, ma mediato dal pensiero convergente per un suo recupero alla razionalità (solo la immaginazione guidata da regole desta ‘effective surprise’: la creatività è situata necessariamente nella matrice di memoria biologico-culturale) [3].

In definitiva la conoscenza dei problemi più urgenti della società attuale, mediati verticalmente ed orizzontalmente attraverso i modi culturali di cogliere il mondo, con le loro valenze di metodo, contenuto, atteggiamenti e valori, forse permetterà, a differenza dell’uomo di J. London, il ritorno definitivo dell’uomo di Bruner nella società per una società migliore: dal mondo della cultura, al mondo sociale con la speranza di un recupero del sociale e della tecnica ai valori ed ai contenuti razionali del terzo mondo di Popper [4].

In questo contesto l’insegnamento della fisica acquista un significato formativo particolare:

1 – per le caratteristiche proprie del suo metodo, per i suoi momenti riscoperti e rivalutati in sede epistemologica e psicologica, omologhi ai modi propri del cervello umano di acquisire conoscenza sull’oggetto esterno (potere creativo della mente di costruire modelli del reale, recuperando l’oggettivo misterioso al razionale, forse acquisito evolutivamente da quando i primi incerti organismi consapevoli si posero curiosi, ma spaventati dalla consapevolezza, davanti alle oggettività interne ed esterne);

2 – per la connotazione dei problemi sociali oggi più urgenti, che per la loro soluzione richiedono conoscenza delle tecniche più avanzate che, nonostante il ‘gap’ fra scienza e tecnica [5], situano chiaramente in una matrice scientifica le loro basi culturali;

3 – Infine per gli atteggiamenti ed i valori emergenti durante tutto il processo di costruzione strutturale: i valori del ‘dubbio’ più che della ‘certezza’ e della ‘verità’; quelli del rispetto delle idee degli altri, la disponibilità ad accettare sempre la critica’ come unico strumento di ‘verosimiglianza’, a far ‘morire’ le proprie teorie come faceva Einstein invece dell’ameba… [6].

No, in definitiva , ai possessori di ‘verità’, ma no anche ad esecutori passivi di ordini e di norme, per una società ‘aperta’, in cui non solo vengono accettate le critiche, ma specialmente ben accolte come unico mezzo per la soluzione razionale dei problemi.

BIBLIOGRAFIA CONSULTATA E NOTE DELLA PARTE PRIMA

1 – Sui processi logici della verifica, della falsificazione e sul concetto di ‘verosimiglianza’, vedere K. Popper – Congetture e confutazioni – Vol. I°, cap 9° e 10°, il Mulino, 1972; D. Antiseri – Epistemologia e didattica delle Scienze – Armando, 1977; D. Antiseri – Elogi dell’errore – da Scuola Italiana Moderna, La Scuola, 1-1-1980; D. Antiseri – Confermare o falsificare – da Scuola Italiana Moderna, La Scuola, 15-1-1980.

2 – A. P. Pistoia  et al.– Alcuni presupposti psicopedagogici ed epistemologici della riforma della Scuola Superiore – da La Ricerca, Loescher, 15-3-1980.

3 – J. S. Bruner – Il conoscere, saggi per la mano sinistra – Armando 1970; C. M. Sersale -J. S. Bruner – Armando, 1978, cap. 2°.

4 – Per un’analisi del significato dei tre mondi di Popper: K. Popper – La ricerca non ha fine – Armando, 1976, cap. 38 e 39; K. Popper -Epistemologia, razionalità e libertà – Armando, 1972, cap. 1°; D. Antiseri – Memoria biologica, mondo 3 e stati problematici oggettivi – da Didattica delle scienze , La Scuola, febbraio 1977; D. Antiseri – Ancora a proposito del mondo 1, mondo 2, mondo 3 – da Didattica delle Scienze, aprile 1977; da La Ricerca, Loescher, 15-Nov.-1978; P. Pistoia et al. – I processi di comprensione e la loro utilizzazione per l’insegnamento della fisica – da La Ricerca, Loescher, 15-nov-1978.

5 – M. La Forgia – Il rapporto scienza/tecnica e la didattica delle Scienze – da La Scuola e Città, La Nuova Italia, 31-ott-1978.

6 – “I possessori di verità hanno le chiavi delle camere a gas” disse Antiseri in: K. Popper – Epistemologia e società aperta – Armando, 1975; per il rapporto fra verità e stato totalitario: D. Antiseri – La democrazia come via alla giustizia – da Scuola Italiana Moderna, 1-giu- 1979.

——————————————————

PARTE SECONDA

STATO DELLO SVILUPPO COGNITIVO AL BIENNIO SUPERIORE: ZONE DI “CONFINE” ED AREA DI “SVILUPPO POTENZIALE” DELL’APPRENDIMENTO

Aggiungete un po’ di immaginazione e fantasia nei “vuoti e forzature” dell’argomentazione, quando ci sono; provocare è aprire al dibattito ed anche al contrasto per andare oltre (beyond) nel mondo complesso!

Fig. 1 (da Hodgkin, in parte modificata nella forma e nei significati); la non corrispondenza fra le ondulazioni (C”) significa che certe potenzialità sono state addirittura ‘soffocate’ rispetto alle altre dall’educazione.

er20001

Attualmente la tendenza al rilassamento ed alla superficialità che ancora oggi dominano nella scuola italiana, certe analisi di tests piagettiani sullo sviluppo cognitivo del ragazzo di 13-15 anni acriticamente condotte e la stessa possibile tendenza di agganciare in qualche modo i primi anni del Superiore alla scuola dell’obbligo, amplificano il rischio che un ulteriore margine di tempo scolastico venga “catturato” dalla scuola media, finendo col condividere, come in essa, i caratteri della semplicità e della continua riduzione al concreto [1].

Esistono due posizioni alternative e per alcuni aspetti contrastanti sullo sviluppo mentale, anche se potrebbero essere interpretatein una prospettiva di integrazione e superamento: 1) quella che fa capo alla Scuola Svizzera di Piaget et al. E 2) quella che rimanda alla Scuola Russa di Vygotschij, Luria e Leontiev et al. per alcuni versi e alla Scuola Mentalista Americana di Bruner et al.; ambedue le prospettive considerano lo sviluppo cognitivo non come un graduale accumulo di relazioni stimolo-risposta alla maniera dei Comportamentisti, ma, come in una scala a pioli piuttosto alti, si procede a scatti seguiti da pause di sedimentazione, assimilazione ed esercizio; ma mentre l’una si limita a descrivere la situazione, rimanendo così ad un livello epistemologico, l’altra ci insegna come si riesca a salire più rapidamente (livello psicologico) [2].

Nella seconda prospettiva (Bruner) le fasi cognitive “inevitabili” di Piaget si “aprono” all’apporto culturale e quindi all’insegnamento-apprendimento, cioè alla scuola (dipendenza del processi di sviluppo e maturazione dal processo di apprendimento). In ambedue le posizioni rimane una interazione dialettica che armonizza gli schemi mentali interni a quelli esterni, con la differenza però che l’oggetto piagettiano è dato all’esterno e l’oggetto bruneriano è invece “rivestito” di cultura, fornendo le prerogative di scardinare le fasi piagettiane; in una situazione di non inserimento in un modello di previsione (falsificazione di ipotesi) il modello stesso viene abbandonato: diventa così chiaro il rapporto fra teoria del pensiero e suggestioni epistemologiche [3].

Gli stessi ricercatori ginevrini (Papert [13]) hanno scoperto particolari risonanze fra epistemologia genetica e pensiero umano, fra strutture disciplinari e apprendimento, attraverso l’analisi e l’utilizzazione di alcuni linguaggi cibernetici (il Logo della M.I.T. [14]), i presupposti teorici per far proprie le suggestioni Montessoriane relative alla possibilità di insegnare tutto a tutti a tutte le età con la conseguente forzatura delle fasi piagettiane. L’analisi approfondita di Microcosmi informatici [13] infatti ha potuto rivelare la possibilità di utilizzare, da parte dell’allievo, sistemi di transizione fra la fisica superiore, la matematica differenziale…e le conoscenze personali molto diverse (fenomeno della sintonia nell’apprendimento tramite “turtle”) e ciò addirittura porterebbe alla stessa razionalizzazione e verbalizzazione delle fasi en-attive e iconiche del Bruner (superamento del Bruner in chiave razionale?).Viene alla mente a questo proposito la rivoluzionaria posizione dello scienziato cosmologo Hermann Bondi di un po’ di anni fa che vedeva nel bambino, addirittura piccolo, come un fisico teorico in erba che sta scoprendo il mondo! Insomma c’è un modo per non far impazzire il millepiedi che, nel fondo al fosso, cerca di capire come fa a muovere le zampe! Si giurava allora che il linguaggio Logo e Microcosmi opportuni su lui costruiti potessero favorire apprendimenti più profondi anche ad età inferiori a quelle su cui si era finora sperimentato, favorendo in tal modo una maggiore padronanza dei simboli e l’oggetto-microcosmo avrebbe avuto tutte le prerogative per essere inserito nella Zona di Transizione con effetti positivi (vedere dopo). Oggi rimane un dubbio. Dopo anni dal tempo descritto, che fine hanno fatto nella scuola italiana tali risultati? Se erano ripetibili, in quanti fra la miriade di progetti proposti, vengono oggi utilizzati, valorizzati e ricontrollati? E tutta la sperimentazione sul LOGO? Boh!

L’apprendimento va oltre l’informazione (going beyond the information given); il processo di apprendimento comprende infatti un’attività di natura intellettuale che permette di impossessarsi di principi strutturali la cui sfera di applicazione e maggiore di quella dell’operazione di partenza [4]. Uno studente che in un test sulla sviluppo cognitivo ottiene un punteggio corrispondente ad un’età mentale, per es., della fase delle operazioni concrete, può superare le prove di età mentali superiori (fase delle operazioni formali, per es., del primo livello, o magari del secondo!), se viene opportunamente stimolato da domande-guida, da esempi e da dimostrazioni (estensione delle posizioni aebliane [5] secondo cui il risultato dipende dall’esperimento per ottenerlo), ma anche, sembra, addirittura da interventi di carattere verbale tradizionale [6]?

Quest’area dello sviluppo potenziale di Vygotschij sembra in qualche modo collegabile alla realtà di “confine” di Hodgkin [7], dove il nuovo rielabora la struttura preesistente della memoria biologica-culturale (che rimanda a competenze innate ed acquisite), ponendosi come sub-strato per nuovi problemi, per domande urgenti, dove dominano un’ansia ed una curiosità rinnovate, aspetti che controllano e guidano la scoperta personale e l’apprendimento autonomo (Fig. 1).

Sembra così che questa zona di frontiera, quast’area potenziale dell’apprendimento, abbia un duplice significato: 1) aspetto vygotschijano dove le possibilità di tansfer possono essere amplificate dagli strumenti culturali; 2) aspetto più specificatamente bruneriano di maturazione mentale. Essi sembrano risolversi nell’omologia fra strutture culturali e strutture cerebrali che a sua volta rimanda alla coincidenza postulata fra “logico” della cultura e “psicologico” del soggetto, fra maturazione ed apprendimento [3].

Come si vede il momento dell’adattamento piagettiano (zona di “confine”) diventa un processo complesso e poliedrico di significati; è nella zona di confine infatti che i simboli ed i concetti si situano a metà strada fra l’oscuro e l’ovvio, dove la creatività, attivata dalla curiosità e dall’ansia, coniugata alle regole del gioco, innesca le fasi euristiche precisate da Polya [15], e può indovinare ipotesi geniali per la soluzione dei nuovi problemi che sorgono. E’ nella zona di confine dove l’uomo in definitiva diventa indagatore; le nozioni e le strutture apprese, tradotte nei diversi modi di rappresentazione (inter-personale, en-attivo, iconico e simbolico) si muovono dinamicamente per recuperare l’enigmatico, ciò che è in ombra, situato in profondità sotto le apparenze del presente stato (l’uomo nell’apprendimento cambia i suoi atteggiamenti nei confronti dell’oggetto).

Avere consapevolezza della zona di confine (meglio se in maniera empatica) è un fatto nodate per l’insegnamento, perchè in essa da una parte si situano le motivazioni ad apprendere(il problema, i punti interrogativi che appartengono proprio all’alunno) e dall’altra si nascondono i parametri con cui è possibile accelerare il passaggio a livelli superiori. Ogni apprendimento nasce dalla zona di confine dell’apprendimento precedente, una specie di “livello potenziale”, uno spazio apprenditivo generativo. Così l’educazione, tramite il docente, procedendo dal problematico e misterioso (almeno per l’alunno), fornisce nella zona dove il potenziale è attivo i propri “oggetti educativi di transizione”, cioè oggetti complessi che tengono conto, da una parte, delle caratteristiche del problema (rami aperti di maglie in una certa zona della struttura, incastri aperti, zone di falsificazione…il docente conosce le zone “calde” della struttura su cui costruire l’oggetto) e dall’altra delle risonanze psicologiche ed epistemologiche, una specie di “giocattolo” nuovo e appropriato [9], studiato e strutturato allo scopo (talora tale oggetto può configurarsi come “momento” curricolare). L’oggetto culturale educativo da somministrare nasce infatti nella zona delle competenze del docente, alimentata dalla sua zona di frontiera, spazio libero dell’auto-aggiornamento e si individua sulle strutture disciplinari, su quelle psicologiche e sui problemi, sentimenti, intuizioni simboliche dell’alunno.

La costruzione di questi oggetti, momenti, moduli-schede guida di un più vasto progetto curricolare (nelle sue implicazioni creative, logiche e sperimentali), è l’aspetto più importante in una programmazione educativa. Allora in questo contesto di rivalutazione della zona di frontiera, acquistano importanza specialmente gli aspetti che sorgono nella zona di interazione-intersezione fra teoria ed esperimento, fra competenza innata e/o precedentemente acquisita e nuova competenza, nella zona di passaggio fra l’oscuro e l’ovvio, attraverso il percorso che porta dal problema alla falsificazione delle ipotesi.

Nella zona di frontiera dove viene meno la competenza (zona del linguaggio interno vygotschijano [10]), giocano particolarmente sentimenti ed emozioni, catalizzatori dei processi creativi, e, proprio per la loro natura più densa di significati rispetto alle immagini (iconico) e alle azioni (en-attivo), dominanti specialmente nella zona di competenza, prendono forza gli enti simbolici nelle ipotesi per indovinare il mondo, capaci di cogliere realtà più profonde (meta-materia di Bachelard) al di là dell’esperienza diretta e comune (materia-oggetto), speciali sonde verso l’oscuro ed il problematico: es., il concetto-simbolo massa, non è esaurito nei processi operativi, en-attivi, di misura, né in alcuna sua possibile rappresentazione iconica, ma (behjond the information given!) è “aperto” ad ulteriori approfondimenti “a cipolla” [11], [12]. Non sono sicuro che tutta l’argomentazione, così com’è, possa essere sostenuta fino in fondo; ma sembra che avvenga proprio in questa fase l’espansione del “logico” e dello “psicologico”, per cui, comunque sia, dovrà essere attentamente valutata nell’insegnamento.

BIBLIOGRAFIA CONSULTATA E NOTE DELLA PARTE SECONDA

1 – S.I.F. – Conoscenze ed abilità fondamentali nel settore delle scienze fisiche – da Scuola e Città, La Nuova Italia, 31-1-1978.

2 – J. Bruner – Verso una teoria dell’istruzione – Armando, 1967, pag. 24-25.

3 – P. Pistoia et al. -I processi di comprensione e la loro utilizzazione per l’insegnamento della fisica – da La Ricerca, Loescher, 15-nov-1978.

4 – L. Vygotschij – Il processo cognitivo – Boringhieri, 1980; R. Palermo – Psicologia sovietica e la costruzione curricolare – da Cooperazione Educativa, N. 9, 1979.

5 – H. Aebli – Didattica psicologica – Ed. Universitaria, 1963.

6 – D. Ausubel – Educazione e processi cognitivi – 1978; C. Scurati – Strutturalismo e Scuola – , La Scuola,1974, pag. 342-343.

7 – R. A. Hodgkin – La curiosità innata – Armando, 1978, cap. 12.

8 – Per una sintesi sulla posizione piagettiana riguardo allo sviluppo cognitivo: J. Piaget – Intervista su conoscenza e psicologia – La Terza, 1978; M. Caramelli – Epistemologia genetica e teoria della conoscenza in J. Piaget – Franco Angeli, 1979, cap. 3.

9 – Per la funzione del gioco sull’apprendimento: A. M. Bondioli – Gioco: funzione e struttura , l’ipotesi di Bruner – da Scuola e Città, La Nuova Italia, gennaio 1979; R. Hodkin op. citata, 6-8; per una visione molto ampia e approfondita vedere la seguente opera in quattro volumi: J. S. Bruner, A. Jolly, K. Sylva – Il gioco: la prospettiva evolutiva – Armando, 1981.

10 – R. Mazzetti – Dewey e Bruner – Armando, 1976, pag.156 ed oltre; L. tornatore – Educazione e conoscenza – Loescher, 1974, cap. 6.

11 – Redondi – Epistemologia e storia della Scienza – Feltrinelli, 1978, cap. 4.

12 – Piero Pistoia – Considerazioni critiche su un progetto programmatico relativo al processo di “comprensione” di un concetto fisico in un ITIS – da La Ricerca, Loescher , 15-ott-1981.

13 – Seymour Papert – Mind Storms – Ed. Emme, 1984.

14 – Polya ?

PARTE TERZA

INSEGNAMENTO DELLA FISICA NEL QUADRO PIU’ VASTO DELLA PREPARAZIONE DI UN ITINERARIO CURRICOLARE:  RICERCA MOTIVATA, RAPPORTO STRUTTURA DISCIPLINARE  – PROBLEMI SOCIALI, INTERDISCIPLINARITA’

INSEGNAMENTO DELLA FISICA 3

———————————————————-

PARTE QUARTA

ALCUNI ASPETTI DELLA DIDATTICA SCIENTIFICA,

NEI LORO RIFLESSI EPISTEMOLOGICI

In generale due sono gli aspetti epistemologici più importanti che hanno controllato in qualche modo la didattica scientifica e in particolare l’insegnamento della fisica nel nostro tempo: Il Positivismo con le sue varianti logiche e le Correnti Convenzionaliste.

Il Positivismo si presenta come fenomeno storicamente importante nel recupero del dato contro un verbalismo vuoto e retorico. Come tutte le posizioni sorte al termine di periodi di stasi autorirarie, i l rinnovamento possiede le caratteristiche del “rimbalzo”, nel senso che in questo periodo si considerano assoluti in maniera acritica i processi di osservazione, di raccolta dati, di costruzione delle leggi ed enunciati del tipo “la mente non può indovinare il mondo”; la sua “ragione scientifica” è capace di cogliere l’esterno attraverso i fatti senza che venga irretita dai linguaggi e dalle opinioni (metodo logico induttivista che presenterà le sue caratteristiche più evolute nel Neo-positivismo, con la validità dell’equivalenza verificabilità = significanza).

Dalle suggestioni epistemologiche del Positivismo, con le sue concezioni metafisiche relative all’assolutezza dei dati duri esperienziali (possibilità di semantica assoluta) sui quali poter costruire teorie tramite linguaggi corretti (sintassi assoluta), dai possibili itinerari potrebbero scaturire per la didattica della scienza:

1°) un insegnamento scientifico come processo standard che, partendo dall’osservazione (quale osservazione?), raccolta dei dati (quali dati rispetto alle miriadi dell’osservazione?), attraverso la loro elaborazione, porta alla legge assoluta (processo induttivo);

2°) un insegnamento scientifico costituito dalla memorizzazione di leggi assolute e relative esercitazioni .

La possibilità di interpretazione diversa e logicamente corretta dello stesso oggetto, il moltiplicarsi degli oggetti della matematica e quindi dei linguaggi con cui “leggere” la Natura al di là del senso comune, la critica profonda ai concetti di spazio e di tempo, lo scardinamento, nella sua essenza, del concetto kantiano del sintetico a priori, aprirono la strada da una parte alle correnti idealistiche anti-scientifiche, nella misura in cui il processo scientifico perdeva il suo carattere assoluto a favore di una rivalutazione riduttiva del pensiero e dall’altra alla presa di consapevolezza della relatività e storicità dei processi razionali. Presero forza in questo contesto le posizioni convenzionaliste che possono essere così riassunte:

a) L’esperienza non indica più in maniera univoca le “leggi” da adottare per spiegarla;

b) le teorie sono convenzioni che non hanno più presa conoscitiva sulla Realtà e quindi possono esercitare solamente un controllo su zone ben determinate dell’esperienza e non su altre.

Sia l’esperimento che la concettualizzazione sono considerati come “dispositivi mistici”, atti all’acquisizione di capacità operative metodologiche nel quadro di una visione utilitaristica e pragmatica delle conoscenze scientifiche [1]. La teoria è solo uno strumento razionale che funziona in pratica. Il fatto nuovo rispetto al Positivismo sembra essere che in questo contesto si pesa, contemporaneamente ed allo stesso modo, l’atto geniale, suggerito da ragioni extra-scientifiche, la concettualizzazione e le tecniche sperimentali con le loro valenze operative manualistiche, nel senso di saper analizzare criticamente i dati, vagliarli con i tecnicismi ed i metodi della statistica (“oggettività” dell’esperimento). Addirittura Duhem, ponendosi in posizione critica almeno col primo Popper, indebolendo fortemente la logica, e recuperando alla simmetria l’espressione logica

{[(HUA) → O] U nonO}-> non H (tesi dell’asimmetria)

tramite: {[(HUA) → O] U nonO}-> non (HUA) [2], prospetta che

le categorie psicologico-intuitive, della semplicità, coerenza e senso estetico, situate profondamente nel senso comune, (inteso come ricettacolo di confuse tendenze e nello stesso tempo di verità chiare e certe che non possono essere emesse in dubbio, riflesso del buon senso di Duhem), siano atte a modificare nel tempo la teoria fisica e le leggi sperimentali, verso un “riflesso ontologico” sempre più profondo (elemento qualitativo aristotelico), nei confronti di una realtà noumenica mai coglibile e pur invocata come giustificazione della scienza [3] (verificazione e falsificazione ugualmente inconcludenti).

Alcune correnti epistemologiche oggi dominanti si prefigurano:

1°) in un recupero del contenuto dove la scienza era ridotta a metodo nella sfera dell’utile,

2°) nella possibilità logica non della verifica, ma dei processi di falsificazione (asimmetria logica fra verificabilità e falsificazione, invalidando l’equivalenza verificabilità=significanza), permettendo – attraverso il concetto di ‘verosimiglianza’ popperiana, la costruzione di rappresentazione del mondo sempre più “vere”, rimanendo, la Verità, un obiettivo regolativo mai raggiungibile – anche se sempre più simbolicamente connotate;

3°) e forse (?) nel mantenimento e rafforzamento invece della capacità potenziale, di chiara suggestione bergsoniana, della mente dell’uomo (del bimbo in particolare) di “indovinare” il mondo, forse riflesso di lontane interazioni co-evolutive fra sistema cerebrale e gli altri enti del Cosmo; aspetto quest’ultimo rilevante, a mio avviso, da tener di conto nell’educazione scientifica ad ogni stadio della costruzione delle “legge”, specialmente nella fase delle formulazioni delle ipotesi, nella fase delle esercitazioni onde costruire efficace einfhunlung, terreno fertile per idee creative, la matrice dell’empatia umana col Cosmo, e, forse, nel transfer bruneriano in una interdisciplinarità verso tutti gli insegnamenti che hanno come fondamento l’educazione mentale all’attività estetica.

In Italia in effetti le suggestioni epistemologiche raramente hanno agito direttamente sulla didattica, ma nel migliore dei casi attraverso qualche pedagogista talora riduttivamente interpretato che ha suggerito modifiche, ma solo sfasate in ritardo nel tempo. Anche sulle proposte didattiche le più attuali relative all’insegnamento della fisica, si possono evidenziare due aspetti:

1°) C’è una tendenza a moltiplicare strumentazioni relative alla ricerca della stessa relazione. Si vedano, ad es., le molteplicità sperimentali offerti dalle ditte preposte per lo studio della caduta dei gravi: dalle modalità più lontane che si rifanno agli esperimenti di Galileo, alle nuove utilizzanti macchine fotografiche, stroboscopi, giradischi…. Non ho niente contro quest’ultimi metodi da discoteca, se progettati per ridurre gli intervalli dell’errore rendendo sempre più difficile la sopravvivenza delle possibili ipotesi attraversi il mondo discontinuo del decimale e/o se visti come ottiche diverse che assicurano sulla ripetibilità dei risultati e sulla indipendenza di essi dall’apparecchiatura sperimentale. Se invece la lro messa in opera è fine a se stessa (l’esperimento per l’esperimento), come penso sembra, perdono di valenza educativa nella misura in cui ritengo che l’esperimento di per sé, anche se esplicitato in tutte le sue componenti formative creativo-operative-manualistiche, non sia riducibile al metodo scientifica di investigazione della Natura che è un oggetto complesso che vede l’esperimento stesso solo come momento del processo. In quest’ultimo caso i diversi prodotti sperimentali del mercato diventano superflui sul piano didattico e sono da rifiutare. In definitiva le novità più salienti nella didattica della fisica sembrano essere quelle che presentano metodi sperimentali e apparecchiature nuove per eseguire esperimenti vecchi. A mio avviso, invece, l’insegnamento della fisica deve promuovere ed amplificare quei processi propri dell’uomo per acquisire la conoscenza del mondo, rendendolo pensatore attento, indagatore sotto le apparenze e coglitore di strutture profonde.

2°) Prima dell’esperimento vengono date due situazioni: a) Si conosce la legge e si tratta solo di ‘verificarla’; b) non si conosce la legge e si va in laboratorio per eseguire certe operazioni sulle apparecchiature messe a disposizione. In ambedue i casi non si coglie la vera situazione epistemologica. Se è sorto, per es., il problema di controllare come varia con la distanza la forza

fra cariche elettriche, senza considerare la difficoltà di progettare e prendere misure dirette in un tale esperimento (al limite potremmo simulare la situazione in un programma computer), si dovrà procedere come segue: si discute sul problema fino a pervenire alla convinzione che, allontanando le sferette, diminuisca la forza; si passa così, utilizzando il criterio di semplicità, all’ipotesi che F sia inversamente proporzionale ad r. Ma la discussione può essere portata a più alto livello tramite il criterio di analogia: è abbastanza plausibile in una interazione a distanza immaginare che “qualcosa” venga emesso dal primo oggetto e si propaghi (con velocità finita o infinita) conservandosi, facendo nasce sul secondo un’azione, funzione della ‘concentrazione spaziale’ del “qualcosa” emesso; un po’ come due bambini che si scambiano la palla sono legati dalla frequenza con cui fanno il gioco. Se l’emissione avviene su un piano, a distanza doppia, sarebbe diffuso ‘quasi’ su una circonferenza di raggio 2r, per cui la concentrazione diminuirebbe proporzionalmente ad r e quindi anche l’azione. Se l’emissione avviene su una sfera, l’azione diminuirebbe col raggio al quadrato; il modello analogico suggerirebbe così le due ipotesi accennate. Continuiamo la discussione col criterio di simmetria che favorirebbe la formulazione di congetture su altri elementi di questa azione (azioni di attrazione su ogni carica uguali e reciproche che agiscono sulla stessa direzione). Quando due oggetti di qualsiasi natura interagiscono fra loro a distanza, qualsiasi essi siano (basta considerali di piccole dimensioni rispetto alle distanze) questa tipo di analogia e questa tipo di simmetria sono applicabili per formulare ipotesi creative in un certo modo. In funzione poi dei materiali a disposizione progetterò un esperimento e mi aspetterò in relazione alle ipotesi formulate che certi valori siano correlati a certi altri. Come si vede non si conosce la legge in precedenza (la legge non si studia prima sul libro!), né ci poniamo davanti all’ apparecchiatura sperimentale per costruirla; lo stesso esperimento viene progettato per mettere alla prova (la più stringente possibile) le ipotesi proposte; non la teoria da una parte e l’esperimento dall’altra, come nel caso dei processi di verifica, un’interazione teoria-esperimento attraverso il processo modulare seguente: problema; discussione sul problema; ipotesi; che cosa mi aspetto dall’esperimento. Ma forse la situazione dell’insegnamento scientifico in Italia riflette una situazione sociale particolare nella quale da una parte il ragionamento verbale-simbolico conchiuso e coerente (nei casi più favorevoli) sembra recuperare alla “Verità” anche i presupposti (egocentrismo sociale), mentre dall’altra la richiesta continua di abilità professionali da parte dell’industria, come unica esigenza dell’inserimento nel mondo del lavoro, tende a ridurre l’importanza delle capacità strutturali del mente.

BIBLIOGRAFIA CONSULTATA E NOTE DELLA PARTE QUARTA

1 – M. La Forgia – Il rapporto scienza/tecnica e la didattica delle scienze – Scuola e Città, La Nuova Italia, 31-ott-1978, pg. 409.

2 – GrunBaun recupera la possibilità di falsificare l’ipotesi isolata, attraverso la logica:

{[(HUA) → O] U (nonOUA}-> non H

Per una disamina dei rapporti verificazione-falsificazione nelle posizioni di Dhem e Grunbaum vedere: P. Parrini – Linguaggio e teoria – La Nuova Italia 1976, cap. 2

3 – Per un’analisi più profonda del pensiero di Duhem: P. Redondi – Epistemologia e storia della scienza – Feltrinelli 1978

Dott. Piero Pistoia

NB: tutti gli articoli nominati a firma di Piero Pistoia sono riportati anche su questo Blog.

——————————————————-

PARTE QUINTA

UNA PROPOSTA MODULARE PER INSEGNARE FISICA

NELLA ZONA DI FRONTIERA (UN METODO DI APPRENDIMENTO)

Tenendo conto delle suggestioni derivanti dalla riflessione epistemologica e dai risultati della scienza psico-pedagogica, recuperati ad una unità profonda della cultura umana e del pensiero nell’identificazione del logico della cultura con lo psicologico del soggetto [1], ritengo che siano di fondamentale importanza i parametri che individuano nella didattica della fisica, in primo luogo, il porsi dell’esperimento nella problematica teorica, piuttosto che una riduttiva analisi, anche se approfondita, delle metodologie del laboratorio stesso, in vista di un insegnamento di tipo empirico tout-court. In questo senso reputo che il laboratorio sia uno dei momenti necessari della costruzione scientifica a livello didattico, solo se inserito opportunamente in una programmazione curricolare che veda l’attività sperimentale come momento “richiesto” dalle problematiche teoriche sorte a livello dell’unità didattica programmata, piuttosto che servire come base induttiva della costruzione scientifica (nuova dialettica mano-cervello).

Si potrebbe allora pensare in prima approssimazione che l’insegnamento della fisica avvenga a scalini [2], ognuno dei quali rappresenta un obiettivo specifico; fra uno scalino e l’altro si situa un’unità didattica che inizia da un problema e termina con un nuovo problema (in effetti questo procedere lineare è complicato dall’inserirsi laterale di rami di altre maglie [12]). Al termine di ogni scalino esiste una fase di ripensamento, di stasi, di esercizio, ora di recupero en-attivo, ora di avanzamento simbolico, rappresentato dall’area di frontiera dell’apprendimento, ove si pongono i nuovi problemi ed i nuovi interrogativi, le basi cioè per la nuova unità didattica. Fra uno scalino e l’altro intervengono i modi culturali di rappresentazione del mondo: l’interpersonale, l’en-attivo, l’iconico ed il simbolico (semiotico) [3], allo stesso livello, e la somministrazione di oggetti di transizione, riassumenti l’unità della mente e della cultura umana, riuscirà a recuperarne la dipendenza “quasi” in uno spazio quadrimensionale di tipo minkowskiano. Si tratta di stili cognitivi atti a rappresentarci il mondo, compresenti a tutte le età; la loro distinzione si opera specialmente a livello del tipo di conoscenza: andare in bicicletta, battere a macchina, usare un utensile materiale… presuppongono una rappresentazione en-attiva, anche se è controllata dalle congetture essa stessa ed in essa prendono significato anche processi creativi e logici di falsificazione come hanno scoperto i pedagogisti cibernetici) [13].

A questo punto si potrebbe pensare ad un oggetto didattico da somministrare, che non abbia caratteristiche specifiche, che agisca per tutte le unità didattiche e che serva come guida al pensiero, che in generale per la conquista del nuovo obbiettivo (una specie di scheda guida per l’indagine e l’investigazione).

In effetti, nell’area di frontiera [1] l’adulto può ‘inserire’ (metaforico) oggetti di diverso significato per le modifiche che possono provocare in questa fase critica di passaggio: 1) problemi sociali complessi, oggetti cioè che si configurano come “esperimenti grezzi” [4], che in generale innescano il recupero alla competenza, 2) oggetti comuni della tecnologia umana (pile, lampadine, motori a scoppio, motori elettrici…) che a mio avviso bloccano l’avanzata verso il confine e quindi anch’essi rimbalzano indietro per essere recuperati alla memoria biologico-culturale; 3) bricolage, cioè oggetti qualsiasi (sassi, pezzi di legno, cocci…) che, più vicini a ‘simboli trasferibili’, possono amplificare il quantum creativo, nella misura in cui hanno potenzialità per essere ‘sentiti’ in maniera diversa (forse il primo essere traballante sulle gambe, ma curioso, che scese dall’albero ai margini di un’antica savana si accorse per la prima volta di essere umano da quando, in situazione di problema, inciampò in un ciottolo che “senti” come strumento e lo conservò per utilizzarlo in problemi analoghi: primo impatto con un simbolo); 4) altri oggetti a valenza negativa come i ‘metodi sbagliati’, che peccano di adultismo, come l’induzione, i procedimenti tradizionali per indurre il concetto di numero o senso spaziale (ignorando l’insiemistica o la topologia)… che potrebbero rallentare se non congelare lo sviluppo cognitivo ritardando sia il ritorno sia l’avanzamento, provocando disturbi nei processi di recupero delle potenzialità della mente umana (NOTA DELL’AUTORE: in effetti oggi nel 2015 quasi più nessuno nella scuola dell’obbligo insegna il numero con la teoria degli insiemi; se il motivo è basato su una misura statistica sull’efficacia di questo metodo, sarebbe stato un esperimento falsificato, per cui degno di rispetto; ma il dubbio è: questi esperimenti sono stati davvero testati? ovvero siamo sicuri che i docenti conoscessero in profondità il teorema di Weierstrass? un’iperbole per dire che forse il motivo è stato un altro!… e non a favore della Scuola); 5) gli oggetti strutturati, tipo il materiale del Dienes, opportunamente studiati per spostare il “confine”, tenendo conto di tutto ciò che oggi conosciamo del funzionamento delle mente e delle strutture disciplinari; 6) i microcosmi cibernetici con le loro valenze sintoniche fra mondi simbolici e situazioni corporee.

Come elemento attivo nella zona di frontiera, area dove domina il sentimento, l’emozione, l’intuito e, venendo meno la competenza, gli approcci nebulosi al Mondo 3 di Popper, pensiamo ad una scheda-guida che dovrà servire ad amplificare proprio quegli aspetti del processo scientifico situati fra teoria ed esperimento che giocano un ruolo essenziale nel procedere lungo la zona formativa [Fig.1 ), ampliando il dominio della competenza stessa.

Già in molti istituti dove viene eseguito il laboratorio di fisica circolano modelli stampati per le relazioni sull’esperimento, spesso divisi in capitoletti indicanti le diverse fasi del lavoro; nonostante tutto tali modelli hanno le caratteristiche del modo induttivo di fare scienza, cioè quel modo ‘adulto’, estraneo alla mente dell’uomo [5], che viene così a porsi come oggetto educativo a valenza negativa. Nonostante che in molti ambienti si parli di problemi e di ipotesi, non ci siamo ancora alzati al di sopra del senso letterale delle parole! D’altra parte la nuova scheda proposta, oltre a segnare la scansione dei diversi momenti moduli componenti l’attività-didattica, serve anche a precisare il fine teorico (consistente nel controllo di ipotesi specifiche in una matrice problematica) indispensabile a dare all’esperimento quel supporto di continuità necessario fra teorico e pratico: molto spesso infatti, in un contesto metodologico diverso, il processo pratico sperimentale fa perdere di vista all’alunno lo stesso significato del dato ottenuto.

TRACCIA DELLA SCHEDA-GUIDA, “OGGETTO DI TRANSIZIONE” NELLA ZONA DI FRONTIERA DELL’APPRENDIMENTO RELATIVO ALLA CLASSE,

SITUATA FRA TEORIA ED ESPERIMENTO

Si prevede un foglio protocollo , (meglio se stampato) diviso in paragrafetti spaziati opportunamente da riempire da parte dell’alunno i cui titoli rappresentano le diverse fasi del lavoro intellettuale e sperimentare da svolgere.

Seguono i titoli con un breve cenno al loro significato didattico.

FASE PRE-SPERIMENTALE (opera essenzialmente nella zona di frontiera)

1 – FORMULAZIONE DEL PROBLEMA – Due sono a mio avviso le situazioni che si configurano come problematiche: 1) quando la corroborazione di un’ipotesi relativa ad una unità didattica, inserita nella struttura culturale precedente, dà nuovi significati ai concetti nodali e instaura nuovi rami nelle maglie; ai margini della struttura si aprono rami non saturati che richiedono di essere chiusi (problema strutturale); 2) quando l’ipotesi (p) viene falsificata (non-p), nasce il problema come contraddizione logica: p e non-p[6]; si sprigionano allora nella zona di falsificazione onde di informazioni non controllate dall’ipotesi precedente, per cui avviene una riorganizzazione della conoscenza per tener conto dei nuovi messaggi. In ambedue i casi il problema nasce all’interno al processo disciplinare, rimandando ad una motivazione interna alla struttura.

2 – DISCUSSIONE SUL PROBLEMA O FASE PRE-IPOTETICA DI INCUBAZIONE RIFLESSIVA – Questa fase riguarda l’analisi del problema tramite i mezzi mentali forniti dalla memoria biologica-culturale: siscelgono oggetti rilevanti per il problema (dissociazione) e si applicano i concetticonosciuti in associazioni nuove (associazione); è la fase che precede l’ipotesi, la fase immedesimazione empatica (einfunlung) di concentrazione che fornirà poi il tentativo di soluzione.

L’attività riflessiva è il presupposto per andare oltre l’informazione (going byond information given) [7], attraverso certi processi che trovano nell’analisi del pensiero il loro status, come l’analogia, la simmetria e la semplicità. E’ la fase in cui avviene la coniugazione Mondo3 – Mondo 2 di Popper [8], immaginazione-pensiero, fantasia-logicità, dove si recupera l’immaginifico al razionale, il dispersivo al costruttivo: in esso si costruiscono i parametri che coniugano la curva del pensiero con quella dell’immaginazione, rendendole più convergenti [9]. Si ha così un contenuto di valori, specialmente nell’età di transizione dove il rifugio in un mondo assoluto ed utopistico (egocentrismo dell’adolescente) estranea spesso le forze e la volontà dell’adolescente da mondo reale impedendo la comprensione e la costruttività. I passaggi euristici di Polya coniugati ai processi creativi innescheranno la fase successiva.

3 – FORMULAZIONE DELLE IPOTESI E TEORIA TENTATIVA (TT) DI POPPER – La discussione sulle caratteristiche del prblema amplifica l’ania e la tensione che precede il momento della formulazione delle ipotesi (buone o cattive che siano). La coniugazione fra la “situazione esperienziale dell’alunno” ed i parametri caratteristici del problema eccitano la fase più o meno creativa della congettura, che ‘cerca di indovinare’ la soluzione, andando oltre l’informazione utilizzando alcune forme del pensiero intuitivo. Le ipotesi hanno la forma degli oggetti del Mondo 3 di Popper e per questo devono essere tradotte in termini sperimentabili nella fase delle aspettative. L’ipotesi può essere sotto forma verbale, analitica o anche essere rappresentata da un sol valore [12].

4 – PROGETTO DELL’ESPERIMENTO – Si dovrà pensare ad un fenomeno artificiale, una “sezione” del fenomeno reale secondo un certo punto di vista fornito dall’ipotesi. Dalle ipotesi (non dal problema [10]) infatti si ricavano informazioni 1) sulla rilevanza delle grandezze in gioco, che in un fase sperimentale procederemo a misurare, 2) sugli strumenti da usare, 3) sul tipo di apparecchiatura che potrà essere montata (progetto dell’esperimento). I punti 2 e 3 sono certamente controllati anche dal tipo di disponibilità del laboratorio didattico e dalla possibilità di preparare una serie di informazioni su strumenti ed apparecchiature da passare al reparto tecnologico per la costruzione. E’ la fase iconica dell’esperimento, l’esperimento sulla carta: dall’ipotesi e dai materiali a disposizione scaturirà uno schemasul modo in cui quest’ultimi verranno strutturati.

5 – CHE COSA MI ASPETTO DALL’ESPERIMENTO – E’ il momento delle aspettative, della traduzione delle ipotesi in termini di previsione, in funzione del progetto sperimentale che abbiamo intenzione di metter in opera. Con quel progetto e quella ipotesi mi aspetto certi risultati correlati in un certo modo. Siamo convinti che il controllo potrà essere solo convenzionale nel senso che, per es., da un’ipotesi di diretta proporzionalità (a/b=k) mi aspetto che una serie di rapporti fra le misure delle grandezze rilevanti risultino uguali nell’ambito dell’errore (zona comune degli intervalli di tolleranza in grafici orizzontali dei rapporti), ovvero una retta sia tracciabile tutta interna alla striscia dell’errore nel piano cartesiano a-b, o una retta “tocchi” tutte le areole dell’errore (è facile estendere il discorso ad altre curve). Il ragazzo così 1) avrà chiara consapevolezza di tutti i passaggi del processo, 2) sarà motivato all’interno per tutto il tempo, come una “necessità” intrinseca alla disciplina, 3) sarà orientato a tracciare una curva continua su punti graficati e non una spezzata, come accade in altri modi di procedere (si trascurano volutamente altre tecniche più raffinate, di analisi dei dati non utilizzabili per il nostro scopo: teoria dei piccoli campioni, metodo dei minimi quadrati, curve di distribuzione, intervalli di confidenza, test del chi-quadro…)

————————————-

FASE SPERIMENTALE (Si procede a mettere in opera il progetto ed a misurare le grandezze scelte). Questa fase può essere sostituita da descrizioni di esperimenti fatti da altri e da tabelle compilate in altri laboratori: siamo consapevoli che molti esperimenti non possono errere eseguiti in laboratori didattici. D’altra parte deve esistere materiale che affianca l’intervento didattico diretto (libro di testo, libri della biblioteca di classe…ma specialmente il laboratorio informatico con software per simulazioni di esperimenti).

1 – TABELLA DEI DATI SPERIMENTALI – Se sono chiari gli aspetti precedenti, è facile per lo studente organizzare i dati in maniera efficiente per la loro elaborazione successiva.

2 – GRAFICI – I valori devono essere riportati su carta millimetrata per costruire i rettangoli degli errori o per indicare la striscia dell’errore (fissiamo criteri didattici per farlo, non avendo a disposizione una statistica sufficiente).

3 – ENUNCIAZIONE DEL PROTOCOLLO SPERIMENTALE – Che cosa accade alle grandezze misurate? I rapporti corrispondenti fra le grandezze rilevanti misurate son uguali nell’ambito dell’errore?Si può tracciare una retta, o una delle curve standard, o la curva ipotizzata, nella striscia dell’errore? Il protocollo ha la forza logica di asserzione del tipo:”Nella striscia dell’errore nel piano cartesiano così e così è possibile tracciare la curva così e così” ovvero “Il valore della grandezza sulla quale avevamo espresso la congettura è risultato Xm +/- er o “la cosa così o così accade in questa zona spazio-temporale limitata”.

FASE CONCLUSIVA

1 – CONFRONTO PROTOCOLLO SPERIMENTALE – IPOTESI (EE DI POPPER ) – Si confrontano le aspettatice con le risultanze sperimentali (il protocollo): l’ipotesi può essere corroborata o falsificata, la curva prevista esce dala striscia dell’errore, il valore misurato (di solito è una media di rapporti può essre o non essere “uguale” [11] a quello previsto.

2 – NUOVI PROBLEMI – Se l’ipotesi è corroborata si riorganizza, sotto la guida dell’insegnante, la conoscenza col nuovo concetto, in maniera da costituire nuovo apprendimento; si aprono nuove magli strutturali che richiedono di essere chiuse (nuovo problema). Se l’ipotesi è falsificata nasce nella zona di falsificazione il nuovo problema : è necessario formulare nuove ipotesi che tengano conto dei messaggi emessi dalla zona di falsificazione.

3 – DISCUSSIONE FINALE EVENTUALE – Che cosa sarebbe accaduto se avessimo usato strumenti per misurare e apparecchiature più sensibili e precise? L’ipotesi sarebbe ancora corroborata? Falsificata? Che risultati hanno dato esperimenti analoghi eseguiti in altri laboratori? Che limite di precisione hanno ottenuto i risultati in esperimenti simili a livello della ricerca accademica? Si introduce così l’aspetto storico e relativo delle leggi della fisica, i concetti di verisimiglianza (detto alla Popper) e di “grado di realtà” rispettivamente di Popper e Bachelard, attraverso le discontinuità sperimentali ed il realismo del decimale. Si apre e si allarga la zona di frontiera successiva; il processo-modulo si ripete, ma su un livello di apprendimento superiore; è già pronta la nuova scheda-guida.

FINE SCHEDA – GUIDA

Dott. Piero Pistoia 

Docente di ruolo in FISICA

BIBLIOGRAFIA CONSULTATA E NOTE DELLA PARTE 5

1 – Piero Pistoia et al – I processi di “comprensioe” e la loro utilizzazione per l’insegnamento della fisica – La Ricerca, Loescher, 15-nov-1978.

2 – J. Bruner – Verso una teoria dell’istruzione – Armando 1978, cap. 2.

3 – R. A. Hodgkin – La curiosità innata – Armando 1978, cap. 11.

4 – Per una distinzione fra esperimento “grezzo” e “guidato”

edi loro significati, vedere; SIF -Conoscenze ed abilità fondamentali nel settore delle scienze fisiche – Scuola e Città, La Nuova Italia, 31-1-1978.

5 – Per le problematiche inerenti il concetto di induzione per es., A. Rossi – Popper e la filosofia della scienza – Sansoni 1975, cap. 2; D. Antiseri – Hypothesis non fingo, eppure il metodo induttore non esiste – Didattica delle Scienze, La Scuola, nov.1976; D. Antiseri – L’articolo scientifico è un’impostura – Didattica delle Scienze – La Scuola, gen. 1977; Piero Pistoia et al. – I fondamenti psicologici ed epistemologici dell’insegnamento della fisica – La Ricerca, Loescher, 15-dic-1977; d. Antiseri – Metodo induttivo, metodo deduttivo o metodo ipotetico- deduttivo – Scuola Italian Moderna, 1-2-1980; D. Antiseri – Problemi e contraddizioni, meraviglia ed interessi – Scuola Italiana Moderna, 15-ott-1979.

6 – D. Antiseri – Problemi e contraddizioni – Scuola Italiana Moderna, 15-101979.

7 – J. Bruner – Going beyond information given – Relazione tenuta nel 1955.

8 – Per una sintesi dei tre Mondi di Popper: Piero Pistoia et al. – I processi di “comprensione” ecc. – op. cit.

9 – Vygotskij – Immaginazione e creatività nell’età infantile – Ed.Riuniti, 1973, pag. 53.

10 – C. Hempel – Filosofia delle scienze naturali – Il Mulino 1968, pag 28.

11 – Per un’analisi del significato di “uguale” in fisica: V. Ronchi – Sul modo di sprimentare – Conferenze di fisica – Felrinelli, 1963.

12 – Vedere su questo blog gli articoli di Piero Pistoia sull’insegnamento della fisica trasferiti più o meno rivisitati, da varie riviste.

13 – F. Gardin – Intelligenza artificiale e Sistemi esperti – riv. Bit, Gruppo ed. Jeckson, ott, 1892, pag. 68.

NB

Tutti gli articoli a nome di PIERO PISTOIA riportati nella bibliografia di questa memoria ed altri sono leggibili su questo blog, cercando con il nome o con la parola “fisica”.

LETTERA AL DOTT. ANGELO MARRUCCI SUL CAP. I° DEL LIBRO DI E. SEVERINO “GLI ABITATORI DEL TEMPO” del dott. Piero Pistoia

CURRICULUM DI PIERO PISTOIA:

piero-pistoia-curriculum

 

Nel lontano 1994 l’amico dott. Angelo Marrucci, allora direttore della Biblioteca di Volterra,  mi propose di scrivere il mio personale pensiero sul cap. I° del saggio di E. Severino “Gli abitatori del tempo”, Armando, 1978. Il 3-6-1994 gli consegnai il seguente scritto ‘a braccio’, che mi aveva richiesto (la mia conoscenza ufficiale ‘timbrata e certificata’ del linguaggio filosofico rimandava alla preparazione del Liceo Classico, diluita nel tempo da più di 60 anni). Oggi il dott. Angelo permane solo nel ricordo. Comunque, per quel che vale, dovunque esso si trovi in questo strano Cosmo multidimensionale, possa egli riposare per sempre in pace. Ho ritrovato questo scritto solo oggi per caso, nel mettere ordine in  un enorme raccoglitore (30 cm circa di apertura), fra i tanti negli scaffali, stipato di fogli di appunti, fotocopie, commenti, riassunti di letture,  abbozzi di programmi e programmazioni, relazioni culturali, progetti di ricerche… un guazzabuglio a più dimensioni che copre una parte del mio percorso di vita. Non so perché questa lettera mi abbia colpito emotivamente, ma rileggendola, anche per gli interrogativi che poneva, ho deciso di condividerla (in specie con me stesso) sul blog.

NB lo scritto è ancora in via di revisione e precisazione, in particolare nella individuazione delle parti dell’originale trasferite in esso.

 

ENTE ESSERE SEVERINO

 

Sono trascorsi molti anni e questo scritto è rimasto privo di un dibattito a seguire, disperso e  sgualcito  in una miriade di scartoffie senza senso che fra poco finiranno, come tutto, in discarica! e… il contenuto dell’articolo rimarrà non completamente compreso (un percorso culturale interrotto).