LA CADUTA DEI GRAVI A PIU’ DI QUATTRO SECOLI DA GALILEO; analisi e significati di alcune sottigliezze nell’insegnamento della fisica e laboratorio al biennio superiore; a cura di Piero Pistoia et al.

CURRICULUM DI PIERO PISTOIA :

piero-pistoia-curriculumok (0)

 

Da rivedere…

LA CADUTA DEI GRAVI A PIU’ DI QUATTRO SECOLI DA GALILEO

Significati, analisi e sottigliezze, con un certo rischio, su alcuni aspetti dell’insegnamento della fisica e laboratorio, al Biennio Superiore; a cura di Piero Pistoia et al.

INTRODUZIONE

Riteniamo giustificato, secondo criteri epistemologici (1), psicologici (2) e didattici (3), un metodo di insegnamento della Fisica, non di tipo induttivista, ma caratterizzato, in generale, da particolari processi ipotetico-deduttivi. E’ da dire, per la verità, che, mentre per la filosofia e la logica tale metodo è falso e quindi da abbandonare, di fatto non lo è sempre per la stessa Scienza operativa e per il senso comune. Nonostante le critiche alla epistemologia popperiana (vedere i post relativi su questo blog) questa filosofia, secondo lo scrivente ed altri, è degna di rispetto perché degnamente si accorda con un insegnamento formativo nella scuola!

Consideriamo altresì che il così detto metodo sperimentale di Galileo, alla luce anche delle ultime interpretazioni del suo pensiero (4), abbia in effetti analoghe caratteristiche.

Secondo tale metodo l’insegnamento deve partire da problemi (nell’accezione data alla parola da Popper, Antiseri et al.), per arrivare, attraverso le teorie tentative di soluzione (TT di Popper), al processo sperimentale di controllo (corroborazione, falsificazione), fino al nuovo problema, fasi che devono razionalmente e consapevolmente esplicitate nel corso di un insegnamento formativo, come è un Biennio Superiore.

Diversi sono i problemi che devono essere affrontati in successione per ‘costruire’ in una classe di un Biennio, la disciplina, sotto la guida dell’insegnante, ‘alcuni’ dei quali, importanti ed obbligati in quanto innescano a cascata una sequenza di altri, sono qui di seguito sinteticamente nominati:

a – Nella caduta dei gravi con attrito trascurabile e al tempo-iniziale, t0=0 s e v-iniziale, V0= 0 m/s (condizioni al contorno), che relazione ci sarà fra velocità di caduta istantanea e tempo e fra velocità istantanea e spazio percorso?

b – Che relazione ci sarà fra modulo della forza applicata ad un oggetto, che si muova con attrito trascurabile su un piano orizzontale e il modulo dell’accelerazione acquistata (vettore forza e vettore accelerazione con stessa direzione e stesso verso)?

c – Che relazione ci sarà fra quantità di carica elettrica posta su un conduttore isolato (o su un’armatura di un condensatore e l’altra messa a terra) ed il potenziale da esso assunto? (5))

d – Che relazione ci sarà fra (Va-Vb) misurata ai capi di un resistore e la Ic misurata in una sezione di esso?

e – Che relazione ci sarà fra il flusso di induzione magnetica concatenato ad un circuito e l’intensità di corrente in esso circolante?

Ognuno di questi problemi e degli altri della stessa forma matematica non nominati deve essere discusso in classe fino a formulare una o più ipotesi plausibili (non necessariamente ‘vere’), per poi progettare un esperimento di controllo. Nella zona di ‘corroborazione’ o di ‘falsificazione’ dell’ipotesi nascerà il nuovo problema e, se l’ipotesi verrà corroborata (avvalorando magari il risultato facendo riferimenti ad analoghi esperimenti condotti in laboratori di ricerca), avremo ‘costruito in classe un ‘pezzetto’ di fisica!

In questo l’autore cercherà di analizzare il problema a, precisandone aspetti e implicazioni educative e formative, riscoprendo nella caratteristica dialogica di tipo galileiano di condurre il discorso e nei precisi e puntuali interventi di Salviati nei confronti di Simplicio, la chiave per ricostruire la fisica anche nelle classi di oggi.

ANALISI E DISCUSSIONE DEL PROBLEMA RELATIVO ALLA CADUTA DEI GRAVI

problema (a) e formulazione delle ipotesi

Focalizziamo l’attenzione e la memoria degli alunni sulla caduta di oggetti pesanti, sui quali le azioni di disturbo dell’aria sono meno evidenti, almeno per basse velocità.

Alla domanda su come si comporterà la velocità durante il movimento, si hanno in generale perplessità. I nostri ragazzi di 14-15 anni hanno o dovrebbero avere la mente del Simplicio galileiano. Alcuni conoscono già le risposte a memoria, secondo noi, purtroppo, fornite probabilmente su informazioni parziali, disperse, prima che si formulassero le ipotesi, prima che si precisassero le aspettative, prima delle delusioni dinanzi ad ipotesi sbagliate, prima insomma dei processi che innescano il vero apprendimento! E’ un po’ come insegnare direttamente le formule da imparare a mente, per poter fare da subito con esse i così detti esercizi di applicazione di esse, riportati sul libro di testo!

Qualche frammento di ricordo culturale precedente scarsamente assimilato, certi mass media, certi personal media, qualche software selvaggio e poco calibrato, avranno fornito queste nozioni fine a se stesse.

IL maggiore tradimento, pur inconsapevole, che la civiltà tecnologica abbia mai perpetrato ai danni dei cuccioli della specie secondo lo scrivente è proprio questo: sono stati gettati in un contesto tecnologico di natura altamente simbolica e lontano così dalla teorie del senso comune, pur coronato eccezionalmente da buon senso, ‘il buon senso del senso comune’, a cui gli alunni possono essere vicini, in un mondo incomprensibile, nel quale i messaggi si trasformano in nozioni isolate senza contesto da memorizzare e delle quali sfuggono le ragioni più profonde, in un mondo dove i ‘messaggi’ svuotati dal ‘mezzo’, per mutuare le parole di McLuan, annebbiano curiosità e meraviglia, uniche molle del progresso umano.

Fortunati se c’è ancora qualche Simplicio, che vede cadere dalla mano il grave subito velocemente appena lasciato. Allora, a guisa del Salviati galileiano l’insegnante può guidare la discussione, al di là di tutto, del tempo e dei programmi, delle scadenze e dei voti, delle rimostranze degli ingegneri del triennio se non ricordano le formule a mente e le definizioni…; il cucciolo dell’uomo ha il diritto di imparare a ‘costruirsi’ i propri modelli razionali, efficaci e graduali, di interpretazione del mondo. E’ solo in questa prospettiva che ha significato l’aggettivo ‘formativo’ che attribuiamo all’insegnamento della fisica al biennio superiore.

Sarebbe interessante a questo proposito compilare una serie di domande opportune che colgano in profondità le strutture di base della fisica formativa del biennio, al di là delle mere nozioni e delle meccaniche esercitazioni spicciole, e con esse preparare un questionario da somministrare agli studenti alla fine del biennio e contemporaneamente alla fine del triennio tecnico raccontando e riflettendo sui risultati comparati. Anni fa, quando insegnavo ancora, feci un tale esperimento aiutandomi nella compilazione anche con questionari sorti in testi specializzati e nelle accademie per analoghi compiti. Da questo mio unico studio risultò, stranamente, che l’insegnamento tecnico con i suoi tecnicismi, meccanismi, espedienti ed artifizi sembrò obnubilare il ragionamento fisico formativo, cioè il pensiero fisico (la Philosophia Naturalis), acquisito al biennio! Sarebbe interessante infatti, per l’insegnamento, se si potesse capire e controllare statisticamente, se davvero questa mera ipotesi fosse da considerare corroborata.

Il sasso aumenta di velocità perché urta la mano che cerca di fermarlo, con più violenza a maggior spazio percorso. Tale sforzo della mano non legato in generale alla prima potenza della velocità, ma alla seconda: noi questo lo sappiamo (anche se dobbiamo far finta di non saperlo; per iperbole, meglio sarebbe direttamente non saperlo, direbbe Foerster!), ma Simplicio non lo può sapere.

Possiamo usare così il criterio di semplicità : la prima ipotesi a questo punto che viene in mente agli alunni è la diretta proporzionalità fra V ed S, proprio come accadde anche allo stesso Galileo! (6).

Quando nella discussione di un problema concludiamo che all’aumentare di una grandezza anche l’altra, alla prima ipoteticamente correlata, aumenta o diminuisce ‘spariamo’ l’ipotesi più semplice di diretta o inversa proporzionalità rispettivamente, a meno che ulteriori approfondimenti della discussione non suggeriscano altrimenti (caso per es., della relazione fra forza gravitazionale e distanza, da affrontare in altro lavoro; vedere intervento dello stesso autore nel blog).

Scrivere oggi V=K*S sembra ‘proibito’ (vedere dopo), per ragioni però troppo lontane dalla mente del nostro alunno Simplicio; comunque essa è la ipotesi più immediata e più vicina al senso comune degli alunni (ed anche a quello di Galileo!) e la dobbiamo mettere nella discussione.

Così la classe, se è vero come è vero che la velocità aumenta anche al passare del tempo, due ipotesi ‘tentative’ saranno formulate dalla classe sul problema della caduta dei gravi, che nelle nostre condizioni al contorno, che riguardano velocità e tempo iniziali, si presenteranno come segue:

1 – La V-istantanea ed S direttamente proporzionali.

2 – La V-istantanea e t direttamente proporzionali.

PRECISAZIONI E SOTTIGLIEZZE CHE SORGONO ARGOMENTANDO SULLE DUE IPOTESI

Non è così immediato intuire per gli alunni che le due ipotesi non sono la stessa cosa. Dobbiamo così rifarci alla matematica elementare del moto uniformemente accelerato (già spiegato in cinematica fra i modelli razionali per ‘leggere’ i diversi moti possibili: se V e t sono direttamente proporzionali (sotto le solite convenzioni al contorno), si dimostra matematicamente e graficamente che V^2 ed S sono direttamente proporzionali e non V ed S, e nel dire V ed S direttamente proporzionali e V e t direttamente proporzionali si vengono ad enunciare due ipotesi diverse e alternative.

Come già accennato anche lo stesso Galileo davanti allo stesso problema formulò proprio le stesse due ipotesi, anche se su V=K*S ebbe in breve dei dubbi. Infatti, dopo avere annunciato tale ipotesi in una lettera a Paolo Serpi, subito dopo, nei “Discorsi e dimostrazioni matematiche”, faceva dire per bocca di Salviati:

Quando le velocità hanno la medesima proporzione che gli spazi passati o da passarsi, tali spazii vengono passati in tempi uguali: se dunque le velocità con le quali il cadente passa lo spazio di 4 braccia furon doppie delle velocità con le quali passò le prime due braccia, [appartenenti alle 4 precedenti; nota dell’Autore] (sì come lo spazzio e doppio dello spazio) adunque i tempi di tali passaggi sono uguali”

Nello stesso moto si verrebbero a percorrere nello stesso tempo un dato intervallo di spazio e la sua metà, appartenente ad esso cosa che può accadere solo se il movimento è istantaneo (velocità infinita). Il ragionamento di Galileo può essere descritto, dalla tabella successiva, considerando X la velocità media nelle prime due braccia e 2X la velocità media in tutte le 4 braccia e, se t = S/Vm (S/t=Vm con le nostre condizioni al contorno), 2/X è l’intervallo di tempo nelle prime due braccia e 4/(2.X) e l’intervallo di tempo in tutte le quattro braccia

                                       S          Vm                t           CONCLUSIONE

Le prime due braccia      2           X              2/X                   2/X

Le quattro braccia          4           2.X            4/(2.X)              2/X

Si vedano anche le altre più qualificate e profonde argomentazioni sorte ultimamente in ambiente accademico (7) (8).

Il fatto che la discussione galileiana su un problema presenti varie sfaccettature, il fatto che esistano più modi di argomentare sull’ipotesi conseguente non significa che non si debba, come faceva Galileo – non necessariamente allo stesso modo- discutere su problemi per tentare soluzioni prima dell’esperimento. Chi vede in questo pericoli di ambiguo verbalismo, non coglie i significati profondi di un corretto discorso epistemologico e psicologico sui processi di acquisizione della conoscenza e, quello che è più grave, potrebbe sviare gli interventi per il recupero delle situazioni tutt’altro che rosee focalizzate dai diversi tests piagettiani sull’intelligenza formale del giovane di oggi (9) (10).

Consapevolmente o no, Galileo, sempre secondo l’autore dello scritto, dimostra la non coincidenza delle due ipotesi e così faremo nell’insegnamento: si formuleranno le due ipotesi e si dimostrerà in qualche modo che sono diverse e alternative se è ‘vera’ l’una , non lo sarà l’altra e viceversa.

Si passerà poi a controllare in laboratorio se è corroborata l’ipotesi V/t=K, che fornisce come proposizione sperimentabile S/t^2=K. Con l’asserzione-base S=t^2*K che è appunto la formulazione meglio sperimentabile di V/t=K, andiamo in laboratorio per il controllo. In realtà l’ipotesi in un certo ‘range’ di errore è corroborata.

Siamo così arrivati a concludere che l’oggetto (per es., una sferetta d’acciaio, se si utilizza un’apparecchiatura Leybold) cade di moto uniformemente accelerato e quindi la relazione fra velocità e spazio è del tipo V^2/S=K, moto matematicamente e fisicamente possibile, mentre la relazione V=K*S rimane esclusa sperimentalmente. L’ipotesi V^2/S=K però non era così semplice come l’altra, per cui non veniva formulata in prima istanza. Chiaramente le due ipotesi V=Kt e V^2=K*S sono fisicamente la stessa cosa.

Rimangono ora da precisare alcune sottigliezze implicate nel significato di K e quindi formulare il nuovo problema da affrontare nella successiva unità didattica. Prima però analizziamo brevemente il significato matematico e fisico della ipotesi V/S=K e V^2/S=K

ALCUNE CONSIDERAZIONI FISICO-MATEMATICHE SULL’IPOTESI V=K*S

Analisi matematica e fisica dell’ipotesi V=K*S

L’ipotesi è espressa dall’eq. differenziale a variabili separabili: dx/dt=K*(x-x0). Dall’analisi di essa, forse impossibile ai tempi di Galileo o meglio che Galileo non conosceva, deriva che, per la ricerca delle soluzioni è necessario porre la condizione che (x-x0) > < 0, perché, separando le variabili (dx/(x-x0) =K*dt) questa differenza va al denominatore, per cui nel processo si perderebbe la soluzione matematica (che invece (fisicamente) potrebbe esistere?), (x-x0)=0 m.

___________________________________

Possibile significato della soluzione (x-x0)=0 (argomentazione incerta? Da rifletterci!)

Galileo_VfS

All’istante t=0 s quando x=x0 la velocità è zero e, non potendo aumentare x, non aumenta V, per cui x=xo rimane costante al passare del tempo e l’oggetto non si muove. Invece l’eq. dx/dt=K*t fornisce ancora per t=0, Vo= 0 m/s, però il tempo scorre, per cui la V può aumentare.

x=xo sembra così essere l’unica soluzione: a t=0, ovunque, del percorso x, poniamo l’origine dello spazio xo , l’oggetto ivi in quiete (Vo=0 m/s), lasciato andare, rimarrebbe in quiete (se vogliamo, si dovrebbe attendere cioè un tempo infinito per vederlo iniziare a muoversi).

IN FORMULE

dx/dt = k.x   separando le variabili:   dx/x = k.dt; integrando:    logx = k.t + logC; passando agli esponenziali:   e^logx = e^(k.t + logC),  e , ponendo C1=e^logC :

e^logx=e^kt . e^logC)

x=C1.e^kt

Se x=xo al tempo t=0, si ha che C1=xo ed      x=xo.e^kt

Se,  al tempo t=0, x=xo=0  e C1=0, si conclude che:

x = 0. e^kt e quindi      x=0

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Non esistono altre soluzioni fisiche all’equazione, perché l’integrazione per il calcolo dello spazio (equazione oraria) non può partire dal punto xo (distanza dall’origine a t=0 s), non permettendo quindi la scelta arbitraria (convenzionale) delle origini; si otterrebbe infatti, integrando l’equazione  dx/(x-x0) =K*dt  fra xo ed x, la seguente espressione, chiaramente inaccettabile:

log(x – xo) – log(0) = K*t


Analisi matematica e fisica dell’ipotesi V^2 = K*S fornisce un modello fisico che funziona

L’analisi matematica dell’ipotesi V^2 = K*S fornisce un modello fisico che funziona:

(dx/dt)^2 = K*(x-x0)

dx/dt = +/- SQR (K) * SQR (x-x0)

Separando le variabili e integrando fra x0 ed x:

2*SQR (x-x0) – 0 = +/- SQR (K)*t

Elevando al quadrato:

4 * (x-x0) = K * t^2


N.B. Dopo aver letto i due  links, tornare indietro all’articolo (cliccando sulla freccia in alto a sinistra)  per leggere l’ultima parte dell’articolo!

Per ulteriori chiarimenti e precisazioni si aggiungono in link anche le due argomentazione indipendenti di Giorgio Cellai e Pier Francesco Bianchi sulla soluzione della stessa equazione differenziale a variabili separabili:

dx/dt=K*(x-x0)

Argomentazione di Giorgio Cellai in pdf

Cellai 18-2-19

Argomentazione di Pier Francesco Bianchi in pdf

GALILEO_Pf_Bianchi0001

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Ma, al di là di tutto ciò che insegna Galileo, è il modo scientifico formativo di condurre il processo, il modo di discutere il problema, sezionandolo con tutti gli strumenti razionali conosciuti per chiarirlo e ‘sparare’ infine un tentativo di soluzione: ciò che insegna Galileo in definitiva è il modo corretto di fare lezione in una classe in cui si formano i cervelli!

FASI SINTETICHE DEI PROCESSI RAZIONALI, ‘RICCHI’ DI TRANSFER, NELL’ANALISI DEL SIGNIFICATO DELLE COSTANTI DI PROPORZIONALITA’

In generale le fasi del processo razionale davanti ad una ipotesi di diretta proporzionalità, corroborata nell’ambito dell’errore, possono essere brevemente delineate in questo modo:

1 – La grandezza derivata K non dipenderà dalle grandezze che lega, ma da altre relative a ‘qualcosa’ di rilevante che durante l’esperimento non è cambiato.

Se, in dinamica, F/a = K, il valore di K non dipenderà dalla grandezza della variabile accelerazione né dalla grandezza della variabile forza (almeno nel ‘range’ dell’errore sperimentale) e quindi potrebbe dipendere da qualche grandezza relativa all’oggetto con cui abbiamo sperimentato che immaginiamo invariato durante l’esperimento. Da quali?

Se, in elettrodinamica, (Va – Vb)/Ic = K, il valore di K non dipenderà dalle grandezze elettriche differenza di potenziale e intensità della corrente; è facile riferirci allora a qualche proprietà del conduttore su cui abbiamo sperimentato. Da quali?

Se, in elettrostatica, Q/V = K, il valore di K non dipenderà dalle grandezze eletrostatiche carica elettrica e potenziale elettrico, ma da qualche proprietà del conduttore dell’esperimento. Da quali?

2 – Il significato fisico di K nasce poi dal metterci, anche mentalmente, nelle condizioni di ripetere l’esperimento ottenendo un valore di K diverso.

Se il K di F/a dipende dall’oggetto su cui abbiamo sperimentato, immaginando un oggetto diverso, se K verrà maggiore, a parità di forza applicata, a acquistata sarà minore; cioè K dipenderà da una proprietà dell’oggetto che si configura come ostacolo all’accelerazione. Potrebbe essere già stata introdotta una grandezza fondamentale che misuri tale proprietà con la bilancia inerziale (al limite una molla tenuta compressa da un filo), con cui si può attribuire un numero e marca  alla massa Inerziale (vedere dopo).

Se il K di (Va-Vb)/Ic dipenderà da qualche proprietà del conduttore usato, cambiandolo otterremo un K diverso. Se è maggiore significherà che, per es., a parità di differenza di potenziale avrò una Ic minore: K si configura come una specie di ostacolo al passaggio della corrente (resistenza elettrica). Una successiva discussione potrà precisare la dipendenza di K dalle grandezze geometriche del filo ecc. Si innescherà una successione di problemi a cascata da affrontare in successive unità didattiche.

Se k di Q/V dipende dal conduttore caricato, cambiandolo dovrebbe cambiare K: se K è maggiore significherà che posso mettere su tale conduttore più carica, a parità di potenziale; cioè K potrebbe avere il significato di capacità elettrica di quel conduttore. Una successiva discussione preciserà la dipendenza da altre grandezze e così via.

3 – Precisazione concettuale delle grandezze investigate.

Come si vede si tratta di veri e propri processi razionali che si ripetono in ambienti diversi, favorendo il transfer concettuale all’interno della disciplina (transfer specifico di Bruner), attraverso il potente Principio di Continuità galileiano.

ASPETTI RELATIVI AI SIGNIFICATI DELLA COSTANTE DI PROPORZIONALITA’ FRA V e t

Abbiamo corroborato in laboratorio l’ipotesi V/t = K: K ha le dimensioni di una accelerazione, e, proprio perché non cambia durante il movimento, non dipenderà dalla V, né dal tempo che cambiano. Potrei così, nella falsariga degli esempi accennati nel paragrafo precedente, affermare che K venga a dipendere da qualche proprietà dell’oggetto usato per l’esperimento. Tale congettura è plausibile abbastanza a questo stadio: oggetti più o meno ‘pesanti’, per es., potrebbero avere accelerazioni di caduta diverse….Cioè dire che K dipende da qualche proprietà dell’oggetto, può voler significare, per es., che oggetti più ‘pesanti’ cadrebbero con un K maggiore (è la congettura più frequente nelle classi, a causa dei riferimenti all’esperienza quotidiana).

Nasce così il nuovo problema sul significato di K ed eventuali ulteriori problemi sulla sua dipendenza da qualche altra grandezza.

Formuliamo, per es., l’ipotesi che sperimentando con un oggetto più ‘pesante’, il K diventi maggiore: oggetti più ‘pesanti’ cadrebbero allora con maggiore accelerazione?

Lasciamo in questa fase, la discussione ad un livello basso, per sfruttare la delusione onde focalizzare l’interesse e destare ‘meraviglia’. Volendo potevamo approfondire usando anche il Teorema di Galileo sull’argomento (nota n.11), eliminando praticamente il rischio sull’ipotesi.

La classe segue motivata il nuovo esperimento sulla misura di K nella caduta e la delusione delle aspettative lascia piuttosto perplessi: la proprietà o le proprietà dalle quali sembrava dipendesse il nostro K sembra non siano relative all’oggetto scelto per l’esperimento.

Seguiranno successivamente argomentazioni insieme alla classe sui presupposti che hanno portato alla formulazione dell’ipotesi sbagliata. A questo punto possiamo anche inserire il teorema galileiano, per tranquillizzare nell’immediato la classe. Si potrà continuare anche a precisare i concetti coinvolti sperimentando col Tubo di Newton.

La discussione dovrà poi procedere facendo riferimento a dati riportati di libri e riviste: si conclude che “tutti i corpi in assenza di attrito cadono, nello stesso posto, con la stessa K (stessa accelerazione)”. Così sembra importante anche il ‘posto’, la zona di spazio dove si esegue l’esperimento, quasi che le ‘zone di spazio’ influiscano in un certo modo sulle proprietà dell’oggetto usato, spostandoci a giro per universo.

I corpi celesti infatti deformano lo spazio con una grandezza vettoriale chiamata ‘campo gravitazionale’. Il comportamento del nostro K potrebbe essere modificato proprio da tale campo: quindi l’oggetto, le cui proprietà non cambiano durante l’esperimento in un dato posto, ha a che fare anche con il corpo planetario nelle vicinanze, nella fattispecie la Terra (il ‘pesare’ degli oggetti non è forse una funzione dei campi gravitazionali nelle vicinanze?). Così il valore del nostro K risentirà di proprietà forse  intrinseche – proprietà di opporsi a K o proprietà di attrarre e farsi attrarre, cioè di ‘costruire’ K – all’oggetto usato per l’esperimento (o forse potrebbero costruirsi’ in interazione con ‘aspetti’ dello spazio vicino e lontano? Mach, Newton). Proprietà insomma che 1) ora ne ostacolano il suo valore (massa inerziale, misurabile con un bilancia inerziale), 2) ora lo aumentano (peso e mass gravitazionale, misurabili con un dinamometro opportunamente tarato e con una bilancia a bilico) – i due aspetti precedenti ne controllano la sua strana costanza, aspetto caratteristico del nostro Universo – 3) ora che dipendono dal ‘posto’ dell’esperimento, pur mantenendo la sua costanza per tutti gli oggetti usati. Il peso degli oggetti ha a che fare con la legge gravitazionale di Newton.

Newton affermava che esistevano almeno due tipi di proprietà intrinseche ad un ogni oggetto fisico collegate al concetto di massa: la massa inerziale, che rappresenta la proprietà di opporsi allo stato di quiete e moto rettilineo uniforme, cioè alla accelerazione, e la massa gravitazionale, proprietà invece di farsi accelerare e creare accelerazione in interazione con altri oggetti. Concettualmente, pur interne all’oggetto, le due masse sono concettualmente disgiunte, nel senso che non sono collegate logicamente da una argomentazione teorica; infatti le rispettive grandezze nascono da due esperimenti di misura completamente diversi. La massa inerziale utilizza per la misura una esperimento che fa riferimento al Terzo principio della dinamica, Principio di Azione e Reazione, mentre la massa gravitazionale si misura con una bilancia a bilico. Queste due misure sperimentali, di natura concettuale completamente diversa, con scelta opportuna delle loro unità,  risultano numericamente uguali per qualsiasi oggetto: una stranezza caratteristica del nostro Universo! Allora si disse: E’ così perché è cosi!
La uguaglianza numerica di esse per ogni oggetto fisico poteva essere ricavata più semplicemente anche con un ragionamento argomentativo (Newton) partendo dalla costanza dell’accelerazione di gravità g, per es., in un zona limitata dello spazio intorno alla terra, non solo durante il moto, ma per qualsiasi tipo di oggetto di qualsiasi natura. Se lascio cadere in una piccola zona un qualsiasi un oggetto di qualsiasi natura e grandezza, per le due definizioni di massa e per il Secondo Principio della Dinamica, l’oggetto, sottoposto alla sua forza peso P che, nel nostro caso, rimane circa costante per ogni oggetto durante il moto, ma varia da oggetto a oggetto, crea una accelerazione a costante per ogni oggetto, ma non è detto che abbia lo stesso valore passando da un oggetto ad un altro se P cambia. In effetti alla accelerazione finale contribuiscono i due contributi delle due masse:

a1=kMg e a2=k’/Mi

Poichè a1 è un incremento e a2 è un decremento sull’accelezazione finale, i due contributi devono essere uguali, se l’acc. finale rimane costante (accelerazione di gravità) per tutti gli oggetti in caduta, cioè g, per l’ ipotesi iniziale.

Qualsiasi oggetto prendo, per l’uguaglianza di g, a1=a2 per cui kMg=k’Mi; ne deriva kMg/k’Mg=1 e quindi, se k=k’ (opportuna scelta delle unità di misura, per le due masse), ottengo Mg=Mi. Basta si consideri che l’oggetto campione  per la massa corrisponda ad una unità di Mi e una di Mg? La differenza numerica delle due masse all’interno degli oggetti risultò dell’ordine di 10^-12. [ Nel blog, cercare “Tao…”, nota (***), ancora di Piero Pistoia].

Il problema diventa complesso: potrà o non potrà essere sviscerato in tutte le sue parti a seconda dei livelli di comprensione e di impegno delle classi di un biennio superiore.

Una cosa è certa: a più di quattro secoli da Galileo dobbiamo esser contenti se si trova ancora nelle nostre scuole, nonostante i mass media, i personal media…, qualche Simplicio che fa ancora le stesse domande ingenue a fronte degli stessi problemi e quasi allo stesso modo.

Rimane da chiederci se la nostra pesante cultura del periodo post-industriale e tecno-ragionieristico, con i suoi prodotti tecnologici così sofisticati fuori della scuola ed anche dentro la scuola (rotaie a cuscinetto d’aria, cronografi ad 1/1000 di sec…), non possa creare nella mente impressionabile dei nostri ragazzi, sovrastrutture così artificiose da impedire i livelli di maturazione normale ed il formarsi graduale di modelli calibrati di interpretazione del mondo (gradualmente sempre più simbolici) e quindi lo sviluppo armonico dell’intelligenza (9) (10).

NOTE E BIBLIOGRAFIA CONSULTATA

1 – K. Popper “Logica della scoperta scientifica”, Einaudi,1970; K. Popper “Conoscenza oggettiva”, Armando, 1975; P. Feyerabend,T.Khun, I. Lakatos et al. “Critica e crescita della conoscenza”, feltrinelli, 1976; D. Antiseri “Epistemologia e didattica delle scienze”, Armando, 1977; P- Redondi “Epistemologia e storia della scienza”, Feltrinelli, 1978.

2 – J. Piaget e B. Inhelder “De la logique de l’enfant e la logique de l’adolescent”, Puf Paris, 1955; J. S. Bruner “Lo sviluppo cognitivo”, Armando, 1973; J. S. Bruner “Il significato dell’educazione”, Armando, 1973; R. Mazzetti “Dewey e Bruner”, Armando, 1976.

3 – J. S. Bruner “Verso una teoria dell’istruzione”, Armando, 1967; M. Laeng “L’educazione nella civiltà tecnologica”, Armando, 1969; P. Pistoia, A. Pazzagli “I fondamenti psicologici ed epistemologici dell’insegnamento della fisica”, La ricerca,15-12-1977, Loescher; P. Pistoia, A. Pazzagli “I processi di e la loro utilizzazione per l’insegnamento della fisica”, La Ricerca, 15-11-1978, Loescher; A. Pazzagli, P. Pistoia “Alcuni presupposti psicopedagogici ed epistemologici della riforma della scuola superiore”, La Ricerca, 15-3-1980, Loescher.

4 – P. Wiener e A. Noland “Le radici del pensiero scientifico”, Fltrinelli, 1977; per non parlare dell’analisi del pensiero galileiano condotta da Feyerabend in “Problemi dell’empirismo”, Milano, 1971 e in “Contro il metodo”, Milano, 1973.

5 – P. Pistoia “Considerazioni critiche su un progetto programmatico relativo al processo di comprensione di una concetto fisico”, La Ricerca, 15-10-1981,Loescher.

6 – G. Galilei “Discorsi e dimostrazioni matematiche”, Salani, 1964.

7 – S. Bergia, P. Fantazzini “La Fisica nella scuola”, XIII, N.1, 1980.

8 – Elio Fabri “La fisica nella scuola”, XIV, N.3, 1981.

9 – L. Bergamasco “Didattica e sviluppo intellettuale degli studenti” da ‘Il giornale di fisica’, gennaio-marzo, 1977.

10 – P. Violino e B. Di Giacomo “ Sul livello cognitivo degli alunni delle scuole secondarie superiori” da ‘la fisica nella scuola’, luglio-settembre, 1981

11 – G. Galileo “Ma questo è, ed è insieme vero che una pietra grande si muove, per esempio, con 8 gradi di velocità, ed una minore con quattro, adunque congiungendole ambedue insieme, il composto di loro si muoverà con velocità minore di otto gradi; ma le due pietre, congiunte insieme, fanno una pietra maggiore che quella prima, che si muoveva con 8 gradi di velocità; adunque questa maggiore si muove meno velocemente che la minore che è contro vostra supposizione”

In effetti Galileo fece ben pochi esperimenti; qualcuno ha detto che forse ne fece uno solo, quello sul piano inclinato ( Galileo’s ? experiment: Myth and symbol, da Rogers “Physics for inquiring mind”, Princeton ). Galileo era un fisico teorico piuttosto che uno sperimentale. Egli usava l’argomentazione logica  in esperimenti pensati e il principio di continuità, individuato in lui da Mach, per cui si mantiene la struttura concettuale, variando lentamente, con continuità appunto, gli elementi sperimentali. Se oggetti di diverso peso (gravi) cadevano dalla stessa altezza, dovevano toccare terra con la stessa velocità, altrimenti si manifestava una contraddizione. Ammettendo che il più peso avesse velocità maggiore, collegandolo all’altro più leggero, questo oggetto composto complessivamente, più pesante di ognuno dei due, avrebbe dovuto possedere una velocità ancora maggiore rispetto al più pesante da solo. La contraddizione nasce perché, nella combinazione dei due, il leggero, a sua volta, avrebbe dovuto rallentare invece il più pesante e quindi la velocità finale dell’oggetto composto avrebbe dovuto essere in effetti minore del più pesante da solo. E’ interessante notare che la velocità, uguale per tutti i gravi, derivata logicamente, rimandi ad una proporzionalità “nascosta e profonda” fra massa gravitazionale ed inerziale per tutti gli oggetti dell’universo fisico. Sembra così che esista un legame fra il ragionamento logico, in esperimenti pensati con oggetti fisici, e le leggi profonde. Se le leggi al di sotto delle apparenze non fossero così, si potrebbero verificare contraddizioni logiche da qualche parte del mondi fisico.

Piero Pistoia

Da continuare….

 

Annunci

PROGRAMMI IN BASIC PER IL CALCOLO DEGLI ERRORI DI MISURA: una facility e un metodo di insegnamento scientifico; a cura del dott. Piero Pistoia ed altri

Post in via di sviluppo

CURRICULUM DI PIERO PISTOIA

piero-pistoia-curriculumok (0)

 

PREMESSA

Nel lontano novembre 1987 fu pubblicato nella rivista Didattica delle Scienze (La Scuola,  Brescia) un mio articolo, che integra quello qui di seguito riportato del febbraio 2001, della stessa casa editrice, dal titolo “LA TEORIA DELL’ERRORE E L’USO DEL COMPUTER IN LABORATORIO: un metodo di insegnamento della fisica nel biennio della Scuola Superiore”. Richiamato e rilanciato in qualche modo dallo scritto che segue, verrà riproposto alla fine di quest’ultimo, senza però la trascrizione della decina di pagine di listati relativi alla teoria dell’errore scritti dall’autore nel linguaggio Basic dell’APPLE IIe. Se ci fossero interessati, potrei trasferire anche questi scripts, anche se ormai  per una macchina obsoleta. Però al tempo furono proposti dal sottoscritto e utilizzati direttamente dagli studenti con efficacia per anni nel laboratorio di Fisica. Con essi si potevano costruire anche grafici orizzontali e cartesiani con areole dell’errore per il controllo sui dati sperimentali (vedere articolo). Potrebbero essere tradotti in altri linguaggi (Mathematica di Wolfram, linguaggio R, Octave ecc.). Mandare richiesta a ao123456789vz@libero.it

er20001

In ultimo trascriviamo anche l’articolo dello stesso autore dal titolo “LETTURE DI FISICA ELEMENTARE – LA CADUTA DEI GRAVI A QUASI QUATTRO SECOLI DA GALILEO: analisi e significati di alcune sottigliezze nell’insegnamento della Fisica al Biennio Superiore” che con gli altri  due completa il quadro di un metodo di insegnamento particolare per la Fisica nella Scuola. L’articolo è stato  scritto ormai da tempo, ma lascio ai curiosi giudicare se non sia ancora piuttosto attuale!

Piero Pistoia 

INDICE DEL POST CON LINKS

1 – UN PROGRAMMA PER CALCOLARE GLI ERRORI SU GRANDEZZE DERIVATE.

1 – PROG. PER ERRORI SU GRANDEZZE DERIVATE

2 – LA TEORIA DELL’ERRORE E L’USO DEL COMPUTER IN LABORATORIO: un metodo di insegnamento della fisica nel biennio della Scuola Superiore.

2 – ERRORE E USO DEL COMPUTER IN LABORATORIO

3 -LETTURE DI FISICA ELEMENTARE – La caduta dei gravi a quasi quattro secoli dopo Galileo: analisi e significati di alcune sottigliezze nell’insegnamento della fisica  al Biennio Superiore

3 – LETTURE DI FISICA ELEMENTARE

PER INGRANDIRE LO SCRITTO CLICCACI SOPRA!

1 – PROG. ERRORI SU GRANDEZZE DERIVATE

ERR1

ERR2

ERR3

ERR4

ERR6

ERR7

Per confrontare e correggere eventuali errori nel lungo e complesso listato  trasferisco direttamente qui gli scripts del Qbasic, riportati nel file sotto ERRORE1.odt, ripresi dal file ERRORE.BAS che ‘gira’ perfettamente.

ERRORE1.odt

2 – ERRORE ED USO DEL COMPUTER IN LABORATORIO

INSERIAMO L’ARTICOLO SULL’ERRORE DEL 1987 di Piero Pistoia

er1

ER21

ER3

ER41

ER5

ER61

3 – LETTURE DI FISICA ELEMENTARE

POSSONO SEGUIRE I PROGRAMMI IN BASIC APPLE IIe RELATIVI ALL’ARTICOLO PRECEDENTE

———————————————————

Attenzione! l’articolo che segue è in via di costruzione; verrà corretto man mano che procede.

LETTURE DI FISICA ELEMENTARE

LA CADUTA DEI GRAVI A QUASI QUATTRO SECOLI DA GALILEO

Analisi e significati  di alcune sottigliezze nell’insegnamento della Fisica al Biennio Superiore

di  PIERO PISTOIA

INTRODUZIONE

Riteniamo giustificato, secondo criteri epistemologici (1), psicologici (2) e didattici (3), un metodo di insegnamento della Fisica non di tipo induttivista, ma caratterizzato da particolari processi ipotetico-deduttivi. Consideriamo altresì che il così detto metodo sperimentale di Galileo, alla luce anche delle recenti interpretazioni del suo pensiero (4), abbia in effetti analoghe caratteristiche.

Secondo tale metodo l’insegnamento deve partire da problemi (nell’accezione data a questa parola da Popper,  Antiseri  et. al.), per arrivare, attraverso le “Teorie tentative” di soluzione (TT di Popper), all’ “Eliminazione Critica dell’errore” (EE i Popper), fase riassunta dalla “Discussione e Argomentazione Critica” e/o dal processo sperimentale di controllo, fino alla formulazione del nuovo problema.

Diversi sono i problemi che devono essere affrontati in successione per costruire in classe la disciplina, sotto la guida dell’insegnante, alcuni dei quali, importanti ed obbligati, in quanto innescano a cascata una sequenza di altri, sono, a mosaico, qui di seguito nominati.

a – Nella caduta dei gravi (per es., con attrito trascurabile e velocità iniziale zero m/sec), che relazione ci sarà fra velocità istantanea  e tempo o fra velocità istantanea  e spazio percorso?

b – Che relazione ci sarà fra modulo della forza applicata ad un oggetto che può muoversi liberamente, con attrito trascurabile, su un piano orizzontale, e il modulo della sua accelerazione acquistata?

c – Che relazione ci sarà fra quantità di carica elettrica posta su un conduttore isolato o su un’armatura di un condensatore e il potenziale elettrico da esso assunto o la differenza di potenziale fra le due armature? (5)

d – Che relazione ci sarà fra la differenza di potenziale (Va-Vb) misurata ai capi di un resistore e l’intensità di corrente (Ic) in una sezione di esso?

e – Che relazione ci sarà fra il flusso di Induzione magnetica concatenata ad un circuito percorso da corrente e l’intensità di corrente in esso circolante?

Ognuno di questi problemi  e dei molti altri non nominati deve essere discusso in classe fino a formulare una o più ipotesi plausibili relativamente alla discussione iniziale attivata, non necessariamente “vere”, per poi  guidare  una discussione logico-critica innescata sul background culturale della classe ( es.,si vedano i teoremi galileiani in ‘Esperimenti Pensati’) o per progettare in laboratorio un esperimento di controllo, dopo magari una trasformazione analitica della relazione iniziale in una proposizione più agile da sperimentare (es., v/t=k  in  s/t^2=k/2). Nella zona di corroborazione o di falsificazione dell’ipotesi nascerà il nuovo problema.

In questo lavoro l’autore cercherà di analizzare il problema siglato a, precisandone aspetti ed implicazioni educative e formative, riscoprendo nella caratteristica dialogica galileiana di condurre il discorso e nei precisi e puntuali interventi di Salviati nei confronti di Semplicio, la chiave per ricostruire la Fisica anche nelle classi di oggi.

ANALISI E DISCUSSIONE DEL PROBLEMA RELATIVO ALLA CADUTA DEI GRAVI (PROBLEMA a) E FORMULAZIONE DELLE IPOTESI

Focalizziamo l’attenzione e la memoria degli alunni sulla caduta i oggetti pesanti (gravi) sui quali le azioni di disturbo dell’aria sono meno evidenti, almeno per basse velocità. Alla domanda che cosa faccia la velocità durante il movimento, si hanno in generale perplessità nella classe. I nostri ragazzi di 14-15 anni hanno e devono avere la mente del Semplicio galileiano. Alcuni però conoscono già le risposte a memoria, fornite probabilmente come nozioni isolate nei corsi precedenti, prima che fossero sorti sull’argomento interrogativi,  prima che fossero formulate le ipotesi, prima che si precisassero le aspettative, prima delle delusioni dinanzi ad ipotesi sbagliate, prima insomma dei processi che catalizzano il vero apprendimento. Qualche frammento di ricordo culturale precedente scarsamente assimilato, certi mass media, certi personal media, qualche software selvaggio e poco calibrato, avranno fornito queste nozioni fini a se stesse.

Il maggior tradimento che la civiltà tecnologica abbia mai perpetrato ai danni dei cuccioli della specie, è proprio questo: sono stati gettati in un contesto tecnologico di natura altamente simbolica e lontano così dalle teorie del senso comune e del buon senso a cui gli alunni sono vicini, in un mondo incomprensibile, nel quale i messaggi si trasformano in nozioni isolate da memorizzare e delle quali sfuggono le ragioni più profonde, in un mondo dove i “messaggi” svuotati da “mezzo”, per mutuare le parole da McLuan, annebbiano curiosità e  meraviglia, molle del progresso umano.

Fortuna che c’è ancora qualche Semplicio che vede cadere il grave subito velocemente, appena lasciato. Allora a guisa di Salviati galileiano , l’insegnante deve guidare la discussione, al di là di tutto: del tempo  del programma, delle scadenze e dei voti; il cucciolo dell’uomo ha il diritto di imparare a costruirsi i propri modelli razionali per interpretare il mondo, graduali ed efficaci. E’ solo in questa prospettiva che ha significato l’aggettivo ‘formativo’ che attribuiamo all’insegnamento della Fisica al Biennio Superiore.

Il sasso aumenta di velocità perchè urta la mano, che cerca di fermarlo, con più violenza a maggior spazio percorso e al passare del tempo. Tale sforzo della mano è legato  all’impulso su essa legato alla prima potenza della velocità, o, se ci riferiamo all’energia necessaria, essa è legata   alla seconda potenza della velocità: questo noi lo sappiamo, ma l’alunno Semplicio non lo può sapere!

In ambedue i casi, usando così il criterio di semplicità, la prima ipotesi che viene in mente agli alunni è la diretta proporzionalità fra v e s, proprio come ebbe a pensare Galileo (6). Quando dalla discussione di un problema concludiamo che all’aumentare di una grandezza anche l’altra, alla prima correlata, aumenta (o dimunuisce), ‘spariamo’ l’ipotesi più semplice di diretta (o inversa) proporzionalità, a meno che ulteriori approfondimenti della discussione non suggeriscano altrimenti ( caso per es., della relazione fra forza gravitazionale e distanza, da affrontare in altro lavoro ()). Scrivere oggi  v=k * s sembra non abbia senso (vedere dopo), per ragioni però troppo lontane dall’intuito del nostro alunno Semplicio, se lo stesso Salviati in prima istanza cadde anch’egli nella trappola. Quindi è da ritenere importante che di tale relazione, rimanga traccia nella mente dell’alunno nonostante tutto, anche se poi verrà abbandonata.

Così la classe formulerà due ‘teorie tentative’ possibili per la soluzione del problema della caduta dei gravi, con le nostre condizioni al contorno:

1 – La v-istantanea e s direttamente proporzionali.

2 – La v-istantanea e t direttamente proporzionali.

 

PRECISAZIONI E SOTTIGLIEZZE CHE SORGONO DALL’ANALISI DELLE DUE IPOTESI

Non è così immediato intuire per gli alunni che le due ipotesi non sono la stessa cosa. Dobbiamo così rifarci alla matematica elementare del moto uniformemente accelerato (già spiegato fra i modelli razionali per “leggere” un moto); se v e t sono direttamente proporzionali, si dimostra con la matematica elementare e graficamente che v ^2 e s sono direttamente proporzionali e non v e s. Così nel dire ve t e nel dire  v e s  direttamente proporzionali, si vengono ad enunciare due ipotesi diverse ed alternative.

Anche lo stesso Galileo davanti allo stesso problema formulò proprio le stesse due ipotesi, anche se su v=k*s ebbe quasi subito dei dubbi. Infatti dopo aver enunciato tale ipotesi in una lettera a Paolo Sarpi, nei “Discorsi e dimostrazioni matematiche”, faceva dire per bocca di Salviati:

“Quando le velocità hanno la medesima proporzione che gli spazzi passati o da passarsi,  tali spazi vengono passati in tempi uguali: se dunque le velocità con le quali il cadente passa lo spazio di 4 braccia furon doppie delle velocità con le quali passò le due prime braccia – appartenenti alle 4 precedenti (nota dell’autore) – (sì come lo spazio è doppio dello spazio), adunque i tempi dei passaggi sono uguali”

Questa fu la sua argomentazione critica  (EE di Popper). Nello stesso moto si verrebbero a percorrere nello stesso tempo un dato intervallo di spazio e la sua metà appartenente ad esso, cosa che può accadere solo se il movimento è istantaneo (velocità infinita). Se v=k*s, chiaramente la velocità istantanea alla fine delle prime 4 braccia è doppia della velocità alla fine delle due braccia. Ma continuando ad argomentare, affermare questo però non vuol significare che anche la velocità media debba essere doppia e quindi il tempo uguale, di qui l’assurdo. Se si considera doppia la velocità media delle 4 braccia  rispetto alle due, si introduce tacitamente anche la seconda ipotesi v=k * t; infatti solo in tal caso vm=(vf+0)/2!

In effetti Galileo nell’affermare che la velocità nel passare 4 braccia  era doppia della velocità nel passare 2 braccia, secondo l’autore, tacitamente veniva ad inserire nel ragionamento anche l’ipotesi v=k * t (che permetteva una velocità media doppia). Sempre secondo l’autore il ragionamento galileiano in effetti viene a significare che, se valgono contemporaneamente v= k * s e v=k * t, si arriva ad un assurdo. Se questa immediata interpretazione non convince, si vedano le altre più qualificate e profonde sorte ultimamente in ambiente accademico (7) (8).

Il fatto che la discussione galileiana su un problema presenti varie sfaccettature, il fatto che  esistano più modi di argomentare sull’ipotesi conseguente, non significa che non si debba, come faceva Galileo – non necessariamente allo stesso modo –  discutere su problemi per tentare soluzioni prima o al posto dell’esperimento. Chi vede in questo pericoli di ambiguo verbalismo, non coglie significati profondi di un corretto discorso epistemologico e psicologico sui processi di acquisizione della conoscenza e, quello che è più grave, potrebbe sviare gli interventi per un recupero delle situazioni tutt’altro che rosee focalizzate dai diversi tests piagettiani sull’intelligenza formale del giovane (9) (10).

Consapevolmente o no, Galileo,  secondo l’autore, dimostra la non coincidenza delle due ipotesi e così verrà fatto nell’insegnamento: si formuleranno le due ipotesi e si dimostrerà  in qualche modo che sono diverse e alternative; se è  corroborata l’una l’altra verrà scartata.

Si passerà poi a controllare in laboratorio  l’ipotesi v/t=k, che fornisce come proposizione sperimentabile s/t^2=k/2. Con l’asserzione_base  s/t^2=k/2, che è appunto la formulazione sperimentabile di v/t=k, andiamo in laboratorio per il controllo. In realtà l’ipotesi in un certo “RANGE” di errore viene corroborata.

Siamo così arrivati a concludere che l’oggetto (per es., una sferetta di acciaio, se si utilizza un’apparecchiatura Leybold) cade di moto uniformemente accelerato e quindi la relazione fra velocità e spazio è del tipo v^2/s=2*k, moto materialmente possibile, mentre la relazione v=k*s rimane esclusa sperimentalmente in quanto alternativa e irriducibile all’altra. L”ipotesi sperimentabile v^2/s=2*k non era però così intuibile come l’altra, per cui non veniva formulata in prima istanza. Chiaramente le due ipotesi v= k*t e v^2=2ks sono la stessa cosa analiticamente.

Rimangono ora da precisare alcune sottigliezze implicate nel significato di k e quindi formulare il nuovo problema da affrontare nella successiva unità didattica. Prima però analizziamo brevemente il significato matematico e fisico delle ipotesi v/s=k e v^2 /s=2k.

 

ALCUNE CONSIDERAZIONI FISICO_MATEMATICHE SU v/s=k e v^2 /s=2k

Analisi fisico matematica dell’ipotesi v=ks

L’ipotesi è espressa dall’eq. differenziale a variabili separabili dx/dt = k*(x-xo). Dall’analisi di essa, non so se possibile ai tempi di Galileo, deriva che, per la ricerca delle soluzioni, è necessario porre la condizione x-xo <>0 pe cui nel processo si perderebbe la soluzione x-xo= 0 metri, per cui x=xo è un punto di discontinuità per la funzione integranda che risulta continua per x<xo e x>xo.

Significato della soluzione x-xo =0

Al tempo t=0 sec, quando x=xo, la velocità è zero e, non potendo aumentare x, non aumenta v, per cui x=xo viene ad essere costante al passare del tempo: l’oggetto non potrà muoversi. Invece l’eq. dx/dt = k*t fornisce per t = 0 sec ancora v=0 m/sec, però il tempo “passa”, per cui la v può aumentare fornendo le altre soluzioni.

x = xo sarebbe l’unica soluzione, ma si perde nel processo di calcolo?!

Analisi matematica e fisica dell’ipotesi v^2 /s=2k

L’analisi dell’ipotesi v^2 /s =2*k, fornisce un modello fisico funzionale:

(dx/dt)^2 =2k*(x-xo)

dx/dt =+/-SQR(2k)*SQR(x-x0)  e separando le variabili e integrando fra xo e x:

2*SQR(x-xo)-0 =+/-SQR(2k)*t ed elevando a quadrato:

4*(x-xo) =2k*t^2

 

Ma, al di là di tutto, ciò che insegna Galileo è il modo scientifico di condurre il processo, il modo di discutere il problema, sezionandolo con tutti gli strumenti razionali conosciuti per chiarirlo e ‘sparare’ un tentativo di soluzione da sottoporre poi al vaglio dell’argomentazione critica e talora dell’esperimento. Ciò che insegna Galileo in definitiva è un modo corretto di fare lezione.

 

FASI SINTETICHE DEI PROCESSI RAZIONALI, DENSI DI ‘TRANSFER’, NELL’ANALISI DEL SIGNIFICATO DELLE COSTANTI DI PROPORZIONALITA’

In generale le fasi del processo razionale davanti ad un’ipotesi di diretta proporzionalità, corroborata nell’ambito dell’errore, possono essere così brevemente delineate.

1 – la grandezza derivata k non dipenderà dalle grandezze che lega, ma da altre, relative a ‘qualcosa’ di rilevante che durante l’esperimento non è cambiato. Se f/a = k, il valore di k non dipenderà dalla grandezza accelerazione, nè dalla grandezza forza (almeno nel range dell’errore sperimentale) e quindi potrebbe dipendere da qualche grandezza relativa all’oggetto con cui abbiamo sperimentato. Da quali? Se (va-vb)/Ic = k, il valore di k non dipenderà alle grandezze elettriche Differenza di Potenziale e Intensità della corrente: è facile riferirci allora a qualche proprietà del conduttore su cui abbiamo sperimentato. A quali? Se Q/V = k, il valore di k non dipenderà dalle grandezze elettrostatiche Carica  e Potenziale elettrici, ma da qualche proprietà del conduttore dell’esperimento. Da quali?

2 – Il significato fisico di k nasce poi dal metterci, mentalmente, nelle condizioni di ripetere l’esperimento ottenendo un valore di k diverso. Se il k di f/a dipende dall’oggetto su cui abbiamo sperimentato, immaginando un oggetto diverso, se k verrà maggiore, a parità di forza, a sarà minore; cioè k dipenderà da una prprietà dell’oggetto che si configura come ostacolo all’accelerazione. Potrebbe essere già stata introdotta una grandezza  fondamentale che misuri tale proprietà con la bilancia inerziale: la massa inerziale. Se il k di (va-vb)/Ic dipende da certe proprietà del conduttore su cui si è sperimentato, cambiandolo potremo ottenere un k diverso. Se è maggiore significherà che a parità di differenza di potenziale, avrò una Ic minore: k si configura come una specie di ostacolo al passaggio della corrente (resistenza elettrica). Una successiva argomentazione può precisare la dipendenza di R dalle grandezze geometriche del filo…. Si innescano una successione di problemi a cascata da affrontare in successive unità didattiche. Se il k di Q/V dipende dal conduttore, cambiandolo dovrebbe cambiare k: se k è maggiore significhera che posso mettere su tale conduttore più Carica, a parità di potenziale; cioè k ha il significato di Capacità elettrica. Una successiva discussione potrà precisare la dipendenza di C dalle altre grandezze e così via.

3 – Precisazione concettuale delle grandezze investigate. Come si vede si tratta d i veri e propri processi razionali che si ripetono in ambienti diversi (transfer di Bruner), favorendo il transfer concettuale all’interno della disciplina ( Transfer specifico), attraverso il potente Principio di Continuità galileiano (E. Mach). Galileo adattava gradualmente le sue elucubrazioni mentali ai fatti, tenendo fermi questi pensieri fino alle estreme conseguenze. Il Principio di Continuità consiste nel variare nella mente gradualmente le circostanze di un caso particolare, tenendo fermo nello stesso tempo l’idea già formulata su di esso (metodo che facilità la comprensione di tutti i fenomeni naturali con un fatica intelletuale minore rispetto ad altri processi.

 

ASPETTI RELATIVI AI SIGNIFICATI DELLA COSTANTE DI PROPORZIONALITA’  FRA v e t

Abbiamo corroborato in laboratorio l’ipotesi v/t=k  nella sua forma meglio sperimentabile (s/t^2=k/2); k ha le dimensioni di una accelerazione e, proprio perchè non cambia, non dipenderà dalla v, che cambia, nè dal tempo. Potrei così , sulla falsa riga degli esempi accennati al paragrafo precedente, affermare che k venga a dipendere da qualche proprietà dell’oggetto che ho usato per l’esperimento.  Tale congettura è abbastanza plausibile a questo stadio: un oggetto più ‘pesante’, per es., può avere accelerazione di caduta diversa…. Cioè, dire che k dipende da qualche proprietà dell’oggetto può voler significare, per es., che oggetti più pesanti potrebbero avere un k maggiore (è la congettura più frequente nelle classi, a causa dei riferimenti all’esperienza quotidiana ricordati).

Nasce così il nuovo problema sul significato di k e eventuali ulteriori problemi sulla sua dipendenza da qualche altra grandezza. formuliamo, per es., l’ipotesi che sperimentando con un oggetto più ‘pesante’, il k diventi maggiore: oggetti più pesanti cadono con maggiore accelerazione. Lasciamo, in questa fase, la discussione a questo livello basso, per sfruttare la delusione onde focalizzare l’interesse e destare ‘meraviglia’. Volendo potevamo approfondire la discussione usando anche il Teorema di Galileo sull’argomento (vedi nota n, 11), eliminando praticamente il rischio sull’ipotesi.

La classe segue motivata  il nuovo esperimento e la delusione delle aspettative lascia piuttosto perplessi: la proprietà o le proprietà dalla quali dipende il nostro k non sono relative all’oggetto scelto per l’esperimento! Seguiranno argomentazioni sui presupposti che hanno portato alla formulazione dell’ipotesi sbagliata. A questo punto possiamo anche inserire il teorema galileiano, per tranquillizzare nell’immediato la classe. Si continuerà precisare anche i concetti coinvolti sperimentando col tubo di Newton.

La discussione dovrà poi procedere facendo riferimento a dati riportati  su libri o riviste: tutti i corpi in assenza di attrito cadono sempre con la stessa ccelerazione nello stesso posto. Così appare importante il ‘postò’, la ‘zona di spazio’ dove avviene l’esperimento, quasi che le zone di spazio mutino le loro proprietà, muovendoci per l’universo.

Gli oggetti infatti ‘deformano’ lo spazio per mezzo i una grandezza vettoriale  chiamata ‘Campo Gravitazionale’. Il nostro k è proprio tale Campo: quindi l’oggetto, le cui proprietà non cambiano durante l’esperimento, è il corpo planetarionelle vicinanze: nel nostro caso la Terra.

Il problema diventa complesso: potrà o non potrà essere sviscerato in tutte le sue parti a  seconda dei livelli di comprensione e di impegno delle classi. Una cosa è certa: a quasi quattro secoli da Galileo, dobbiamo  essere contenti se si trovano ancora nelle nostre scuole, nonostante mass media, personal media…, ancora i Semplicio, intelligenti anche se dotati solo di teorie del senso comune, che fanno ancora le stesse domande ingenue davanti agli stessi problemi di quattro secoli fa e quasi allo stesso modo.

Rimane da chiederci se la nostra pesante cultura del periodo post-industriale e oltre, con i suoi prodotti tecnologici così sofisticati fuori della Scuola ed anche dentro la Scuola (rotaie a cuscino d’aria, cronografi a 1/1000 di sec…) non possa creare, nella mente impressionabile dei ragazzi, sovrastrutture così  artificiose da impedire i livelli di maturazione normale e il formarsi graduale di modelli calibrati di interpretazione  del mondo (gradualmente sempre più simbolici) e quindi lo sviluppo armonico dell’intelligenza (9) (10)-

PIERO PISTOIA

 

 

BIBLIOGRAFIA E NOTE

1 –  K. Popper “La logica della scoperta scientifica”, Einaudi, 1970; K. Popper “Congetture e confutazioni” Vol. I° e II°, Mulino,1972; K. popper 2 Conoscenza oggettiva2, Armando,1975; P. Feyerabend, T. Khun, I, Lakatos et al. “critica e crescita della conoscenza”, Feltrinelli, 1976; D. Antiseri “Epistemologia e didattica delle scienze”, Armano, 1p77; P. Redondi “Epistemologia e storia della S, Feltrinelli, 1978cienza

2 – J. Piaget e B. Inhelder “De la logique de l’enfant e la logique de l’adolescent”, Puf Paris, 1955;J. S. Bruner “Il significato dell’Educazione”, Armando, 1973; R. Mazzetti “Dewey e Bruner”, Armando, 1976.

3 – J. S. Bruner “Verso una teoria dell’istruzione”, Armando,1967: M. Laeng “L’Educazione  nella Civiltà tecnologica”, Armando,1969; P.  Pistoia et al. “I fondamenti psicologici ed epistemologici dell’insegnamento della Fisica” La Ricerca, Loescher, 15-12-1977; P. Pistoia et al. ” I processi i Comprensione e la loro utilizzazione per l’insegnamento della Fisica”, La Ricerca,  Loescher, 15-11- 1978; P. Pistoia et al. “Alcuni presupposti psicopedagogicie ed epistemologici della Riforma della Scuola Superiore, La Ricerca, Loescher,15-3-1980.

4 – P. Wiener e A, Noland “Le radici del pensiero scientifico”, Feltrinelli, 1977; per non parlare dell’analisi del pensiero galileiano condotta da P, K. Feyerabend in “Problemi dell’Empirismo”, Milano, 1971 e in “Contro il metodo”, Milano, 1973.

5 – Per la didattica del concetto di Capacità elettrica:  P. Pistoia “Considerazioni critiche su un progetto programmatico relativo al processo di Comprensione di un concetto fisico”, La Ricerca, Loescher, 15-10-1981.

6 – G. Galilei “Discorsi e Dimostrazioni matematiche”, Salani, 1964.

7 – S. Bergia-P. Fantazzini “La Fisica nella Scuola”, XIII, N. 1, 1980

8 – Elio Fabri “La Fisica nella Scuola”XIV, N. 3,1981.

9 – L: Bergamasco “Didattica e sviluppo intellettuale degli studenti”, Giornale di Fisica, Gennaio-marzo, 197

10 – P. Violino e B. Di Giacomo “Sul livello cognitivo degli alunni delle Scuole Secondarie Superiori” , La Fisica nella Scuola, Luglio-Settembre, 1981.

11 – Esperimento mentale di Galileo per dimostrare, rileggendo oggi,  che, partendo da fermo,  la velocità di caduta da una stessa altezza, in assenza di attrito, è la stessa per tutti i corpi di qualsiasi natura, peso e forma. Galileo in effetti al tempo della dimostrazione parla di velocità s.l. di due ‘pietre’ di diversa ‘grandezza’, che cadono senza precisare se si tratta di velocità istantanee alla stessa altezza, o velocità con cui urtano la base o se partono addirittura dalla stessa altezza (visto che il movimento aristotelico degli oggetti verso il loro Stato Naturale era uniforme e le velocità degli oggetti proporzionali al loro peso ). Comunque la dimostrazione con le precisazioni dette continua a valere per tutte le velocità istantanee ad ogni altezza nella caduta, per le velocità finali e per le velocità medie e per tutti i corpi di ogni peso natura e forma.

“Ma se questo è, ed è insieme vero che una pietra grande si muove, per esempio, con 8 gradi di velocità, ed una minore con quattro, adunque congiungendole ambedue insieme, il composto di loro si muoverà con velocità minore di otto gradi; ma le due pietre, congiunte insieme, fanno una pietra maggiore che quella prima, che si muoveva con 8 gradi di velocità; adunque questa maggiore si muove meno velocemente che la minore; che è contro vostra supposizione”.

 

 

 

 

 

 

 

Riteniamo