LA GEOTERMIA E’ UN’ENERGIA PULITA? E GLI IMPIANTI A “CICLO BINARIO”? Alcuni aspetti del problema e suggerimenti; a cura del tecnico Giovanni Borghetti; post aperto.

IN BREVE: ALCUNI PUNTI FERMI SULLA GEOTERMIA del tecnico Giovanni Borghetti

La geotermia può essere definita un’energia pulita? La risposta non può essere nè sì e né no: dipende dal tipo di fluido geotermico e dipende dal tipo di impianto di sfruttamento. Che cos’è la geotermia? Con geotermia si intende lo sfruttamento del calore, contenuto nei fluidi prelevati dalle profondità della terra. Il calore prelevato dai fluidi geotermici può essere sfruttato tale e quale (vedi teleriscaldamento) oppure trasformato in energia meccanica e quindi, elettrica. Parlando nello specifico di produzione geo-termoelettrica, quali sono i fattori che concorrono a determinare se la geotermia può essere considerata pulita o no? Prima di tutto il tipo di fluido. I fluidi geotermici sono sempre costituiti da acqua e vapore in varie percentuali (titolo del vapore), da gas incondensabili (prevalentemente CO2) e da altri elementi (boro, zolfo, mercurio, arsenico…), in funzione delle rocce attraversate. Relativamente agli inquinanti contenuti nel fluido geotermico non si può fare molto: spesso la soluzione è non realizzare impianti in quelle aree dove i fluidi sono particolarmente inquinati. Oppure, realizzare impianti che abbattono tali inquinanti o che non li usano direttamente per il ciclo di centrale e, quindi, non li mettono in contatto con l’atmosfera. Relativamente agli impianti dove si abbattono le principali sostanze inquinanti, sono ormai diffusi nel mondo, gli impianti di abbattimento dell’Idrogeno Solforato (H2S) che, pur non avendo una riconosciuta pericolosità per la salute e l’ambiente, ha uno sgradevole odore di “uova marce”. ENEL ha dotato le sue centrali geo-termoelettriche di impianti di abbattimento polivalenti, denominati AMIS; tali impianti, concepiti e realizzati da ENEL, riescono ad abbattere, quasi completamente, Mercurio e H2S. Resta l’emissione della CO2, contenente piccolissime quantità di altri gas. Rispetto alla produzione di elettricità mediante combustibili fossili, c’è da dire che la quantità di CO2 prodotta dalla geotermia, a parità di energia prodotta, è molto piccola. Le centrali dotate di torri refrigeranti “ad umido” hanno anche un pennacchio che fuoriesce da tali torri refrigeranti. Anche se tale pennacchio è costituito prevalentemente da vapore acqueo, viene spesso immaginato come fonte di grande inquinamento e, quindi, crea allarme. E anche se è vero che tale pennacchio tende a salire e disperdersi nell’atmosfera, è pur vero che una pur piccola quantità di goccioline di fluido geotermico (drift) viene trascinata e può ricadere nei dintorni dell’impianto. L’adozione di torri refrigeranti del tipo “a secco” può eliminare totalmente il problema.

La soluzione che elimina alla radice qualunque tipo di inquinamento ambientale è basata su impianti a “ciclo binario” dove, dal fluido geotermico, viene soltanto prelevata una parte del calore contenuto e poi reiniettato, con tutti i suoi inquinanti, solidi e gassosi, nella falda profonda, da cui era stato prelevato. Il resto della centrale (circuito secondario) è completamente separato dal circuito geotermico (primario). Questo tipo di impianti permette di sfruttare, entro certi limiti, qualunque fluido geotermico (acqua, vapore, miscele acqua-vapore) e, a fronte di un rendimento termico più basso e costi di investimento maggiori, offre il vantaggio di essere a impatto zero sull’ambiente. Ovviamente, l’impatto dovuto alla presenza dell’impianto, delle strade e linee di trasporto del fluido, nonché delle linee elettriche, dell’impatto dovuto alle fasi di perforazione e montaggio dell’impianto e successive manutenzioni, sono elementi che possono essere minimizzati ma non eliminati.

Chi volesse approfondire la tematica, può trovare su Internet un’ampia trattazione; a titolo indicativo, si riportano i collegamenti a due siti Internet ma, facendo una ricerca, esistono molti altri siti dove trovare notizie sull’argomento.

http://www.unionegeotermica.it/

http://www.geothermalenergy.it/content/home

 

UNA RIFLESSIONE NDC (note del coordinatore: Piero Pistoia)

La reiniezione ad alte profondità della componente gassosa non condensabile, a parte l’energia non trascurabile necessaria per la compressione,  è così facile e scontata, se non vogliamo provocare alcun inquinamento in aria?

Per chiarirci le idee si accettano tutte le risposte e/o altre riflessioni! 
Da inviare (in odt, doc o pdf) all'e-mail:  ao123456789vz@libero.it ovvero pfbianchi@hotmail.com. 
Annunci

UN POSSIBILE RACCONTO SULLA RELAZIONE FRA MASSA ED ENERGIA: art. del dott. Piero Pistoia, art. del dott. Fabio De Michele e di altri; post aperto

CURRICULUM DI PIERO PISTOIA

PIERO PISTOIA CURRICULUM2

PROLOGO ALL’ARTICOLO di Piero Pistoia

In via di sviluppo; rivisitato e corretto da Il Sillabario n. 4 1995; da esso in particolare riprese le immagini.

Chi trova errori li corregga o ce li comunichi! Grazie.

L’ARGOMENTAZIONE SVILUPPATA IN QUESTO RACCONTO CERCA DI SEMPLIFICARE IL PERCORSO CONCETTUALE SEGUITO NEL TESTO “PHYSICS FOR THE INQUIRING MIND” BY ERIC M. ROGERS, Princerton University press, Cap. 31. Tale testo al tempo fece epoca. Il capitolo 31 sulla Relatività fu poi tradotto anche in italiano per il “The Project Physics Course” della Zanichelli, Unità 4 e Unità 5, 1982. Questa traduzione fu inserita nella Prima Lettura, pagg. 5/114-5/141.

AFFERMAZIONE DI ROGERS NEL CUORE DELL’ARGOMENTAZIONE

“…Then ε, watching ε’  at work, sees that ε’ uses a clock that runs slowly (but they agree on normal meter sticks in the y-directions). So ε sees that when ε’ said  he misured 3 meters travel in 1 sec, it was ‘really’ 3 meters in more-than 1-second  as ε would misure it by his clock…” by Rogers pag. 486

 

___________________________RIQUADRO_______________________

CAPITOLI

  2 – NOZIONI NECESSARIE DI FISICA ELEMENTARE

  3 – NOZIONI NECESSARIE DI RELATIVITA’ RISTRETTA

  4 – RELAZIONE FRA MASSA ‘A RIPOSO’ E MASSA IN MOVIMENTO: UN    ESPERIMENTO “PENSATO” ALLA GALILEO

  5 – LA RELAZIONE FRA MASSA ED ENERGIA

  6 – NOTE

 7 – IL DUBBIO

____________________________________________________________

CLICCANDO SOPRA GLI SCRITTI  POCO LEGGIBILI SI INGRANDISCONO

Nozioni Fisica classica

CENNI DI NOZIONI NECESSARIE DI RELATIVITA’  RISTRETTA

I Postulati della Relatività Ristretta di Einstein affermano 1) Tutte le leggi fisiche sono le stesse in tutti i sistemi di riferimento inerziali (“spazi” che traslano reciprocamente di moto rettilineo uniforme). 2) la velocità della luce (nel vuoto) è la stessa per ogni osservatore in un sistema di riferimento inerziale, qualunque sia il moto relativo fra la sorgente luminosa e l’osservatore. Su questi postulati si “costruiscono”, senza grandi difficoltà matematiche (a parte qualche sottigliezza concettuale), le così dette Trasformazioni di Lorentz (quelle di Galileo riguardavano lo stesso argomento senza considerare il  2° postulato), che rappresentano le relazioni fra coordinate di uno stesso evento “lette” da due osservatori  situati in due “zone di spazio” che si muovono relativamente di moto rettilineo uniforme con velocità V. Senza entrare nel merito, queste trasformazioni permettono di affermare fra l’altro che a)  Ogni osservatore di un sistema inerziale pensa di essere in quiete e vede gli oggetti sull’altro sistema scorciarsi nella direzione del moto  di un fattore 1/R=√(1-V2/c2 ) se R=(1-V2/c2)-1/2. R è anche circa uguale a:  1+1/2*V2/c2 .  Se V è minore di c (oggetti-massa), R è maggiore di 1; in buona approssimazione è 1 se V è molto minore di c (V<<c); √(1-V2/c2 ) < 1. b)  Ogni osservatore  che pensa di essere in quiete (es., Oa), vede rallentare  l’orologio dell’altro sistema (Ob) ancora di un fattore R. Per Oa rallentano anche le vibrazioni degli atomi e quindi anche gli orologi atomici, il battito del cuore, il metabolismo degli organismi viventi, che probabilmente condiziona tutto il processo vitale (il ciclo vitale degli organismi aumenta insieme alla speranza di vita; si invecchia più lentamente [ha senso qui la relazione Δtb = Δta * √(1-V2/c2 )].   Ad ogni intervallo fra ticks successivi corrispondente ad un secondo letto nell’orologio dell’osservatore che pensa di essere in quiete, corrisponde più di un secondo nell’orologio di Ob (per ogni secondo → 1 sec*R; 3 sec in Oa, 3*R sec in Ob, sempre registrati da Oa ). In termini di pendolo, se i due osservatori hanno un pendolo che batte il secondo (oscillazione completa in un secondo misurata da ogni osservatore all’interno del proprio sistema), se Oa (in quiete) guarda il pendolo di Ob, vede che, quando il suo pendolo termina l’oscillazione completa (1 sec), l’altro (OB) ha ancora da terminarla. Che cosa accade ad R se V si avvicina a c? E se V supera c? E delle misure  delle dimensioni degli oggetti ? (l=lo/R, vedere (i) e (ii) nella figura sotto) e del tempo? (t=to*R? vedere (iii) nella figura sotto o t=to/R?); ancora da approfondire!.

lorentz0003

Come cambiano le misure predette dalla relatività

L’immagine sopra riportata con scritti in inglese  si trova nel cap. 31 pag. 485 del testo “Physics for inquiring mind” di Eric M. Rogers; in italiano si trova invece nelle ‘Letture’ pag, 5/127 del testo “The project Physics Course, Unita’ 5 e Unita’ 6” Zanichelli editore e noi l’abbiamo presa in prestito.

La Figura sotto rappresenta invece un esperimento costruito nella mente, di fatto scarsamente praticabile, ma che pensiamo possa facilitare l’apprendimento del concetto (ipotesi: le due masse rimarranno uguali? Certamente! almeno il  tipo di atomi e il loro numero rimarranno gli stessi). Centinaia sono stati gli scritti sulla relatività di Einstein dopo la sua pubblicazione all’inizio del XX° secolo e altrettanti verranno pubblicati nel corso del nuovo secolo, con i loro obiettivi, i loro percorsi rilevanti,  i loro stratagemmi, le loro ‘fisiologie’ intendo.  Nel nostro caso ci sono due osservatori in due “spazi” paralleli, che si muovono relativamente in verso opposto di moto rettilineo uniforme con velocità relativa V. Ciascun osservatore possiede un oggetto-massa identico (stesso contenuto di materia) posto in quiete su un piano privo di attrito.  Si appoggi ai due oggetti (chi e come non si sa!) un sistema ‘molla compressa-corda’ privo di massa nel momento di incontro, quando i due spazi si trovano di fronte lungo Y e la molla termina l’azione proprio quando gli orologi dei due sistemi segnano zero secondi (sic!). Per la sincronizzazione degli orologi, posti ai nodi di strutture spaziali ‘a tubi innocenti’ ed altro, si rimanda all’articolo di Giorgio Cellai in questo blog. Sono uguali e opposti gli impulsi nei due sistemi e, per come è stata la spinta, per ogni osservatore all’interno del proprio spazio, appena caduta la molla, i due oggetti si muovono lungo la direzione dell’asse y in versi opposti di moto uniforme con uguali quantità di moto. Per la conservazione della quantità di moto vettoriale infatti, sia il vettore M*Va sia il vettore di verso opposto M*Vb continueranno a ‘guardare’ nella direzione dell’asse Y. Per la fisica classica le due velocità dovranno essere le stesse! Ma  misuriamole tenendo conto delle trasformazioni relativistiche accennate! Da notare che, se, per es., l’osservatore A pensa di essere fermo, vede muovere l’oggetto in B lungo la diagonale di lati V e vb (!), il metro lungo X si contrae,  ma noi siamo interessati solo al movimento lungo y. Se due masse Mb e  Ma interagiscono sotto lo stesso impulso, in un sistema isolato, come già accennato, la Quantità di Moto totale è costante nel tempo. Tenendo conto  delle condizioni iniziali (per t=0, vb1=va1=0) otteniamo Ma*va = Mb*vb e se, per l’osservatore A per qualche ragione, vb=va/R, vb diminuisce di R,  per cui Mb=Ma*va/vb aumenta di R.  E viceversa per l’osservatore B. Se partiamo con due masse uguali , Mb=Ma, otteniamo che Mb diventa maggiore di Ma a causa del movimento (ancora da rifletterci). relativitàdn2 _____________________________RIQUADRO___________________

Per qualsiasi valore di V anche per V/c<<1:

M-Mo = Mo*R – Mo    dove    R=1+1/2*V^2/c^2 ;   se

M-Mo = Mo*(R-1) allora  M-Mo = 1/2 * Mo*V^2/c^2 =Er/c^2

ΔM =Er/c^2

Se V<< c, fornendo energia cinetica  (tramite lavoro  di una forza , urto…) o energia di qualsiasi altro tipo (es., calore), la sua massa , in conseguenza di ciò, aumenta di Er/c^2 e viceversa.  (Da chiarire ulteriormente)

Attenzione: è la V, velocità relativa dei due spazi, che fa rallentare gli orologi, non le velocità delle due masse, indicate con Va e Vb ovvero va e vb o altro! R=1+1/2*V^2/c^2 

__________________________________________________________

relativitàc1

Piero Pistoia

N.B. – I DUBBI SU ALCUNI PASSAGGI CONCETTUALI SONO STATI DISCUSSI CON L’ING. RODOLFO MARCONCINI E COMUNICATI ANCHE AL  PROF. GIORGIO CELLAI.

IL DUBBIO:  Dai principi della Teoria è possibile derivare logicamente in ogni caso la seguene relazione?

 Δtb = Δta / √(1-V2/c2 )      –>    Δtb aumenta in questo    modo in ogni condizione?

FORSE!  LA SOLUZIONE DEL

DUBBIO_ rel1

LORENTZ_RELATIVITA’OK in doc

ancora da trasferire in pdf

LORENTZ_RELATIVITA’OK1

 

ARTICOLO DI FABIO DE MICHELE  (Il sillabario N.2 e N.3 -1996 )

demic (2)

demic3

AL MARGINE DEGLI ARTICOLI SU MASSA  ED ENERGIA            dott. Piero Pistoia

relat10001

DEDUZIONE E RIFLESSIONI SUL SIGNIFICATO DELLE TRASFORMAZIONI DI LORENTZ_EINSTEIN

Energia del Pianeta. Il fuoco flebile di Prometeo del prof. Marco Rosa- Clot Università di Firenze

(Energia del pianeta ed energia dell’uomo)

Il fuoco flebile di Prometeo

prof. Marco Rosa-Clot

Dipartimento di Fisica Università di Firenze

La scala planetaria

L’uomo abita da poco tempo il pianeta terra, e come tutti i suoi predecessori (e successori?) ne sfrutta a proprio vantaggio le risorse, in primis quelle energetiche, con una importante differenza: nelle ere precedenti, il fabbisogno di una specie si risolveva in calore e cibo; l’uomo invece costruisce e produce e quindi usa proporzionalmente molta più energia.

Il pianeta però è molto generoso: la terra riceve dal sole 120mila TW (TeraWatt), cioè 1.2 1020 watt di energia radiante (1 TW = 1015 watt), e di suo ne produce 30 attraverso la radioattività della crosta. La domanda di energia dell’uomo, sommando tutti i consumi, non supera i 10 TW, una frazione insignificante, meno di una parte su diecimila.

immagine3

Uno dei 17 Km2 di saline ad est di Cagliari. La potenza termica a bassa entalpia (90-95 C°) che si ricava da un Km2 è di circa 40 MW in continua!

Il problema sta nel fatto che l’uomo l’energia la vuole concentrata e subito: quando si gira la chiavetta dell’auto si usano da 40 a 100 KiloWatt (KW), una doccia di acqua calda richiede una potenza termica di 20 KW, e moltissime abitudini (per esempio l’utilizzo di carta per cucina usa e getta) implicano un alto costo energetico e sono per noi ormai irrinunciabili.

Il pianeta ci viene incontro: vogliamo energia concentrata? Eccola!!! La fotosintesi clorofilliana trasforma ogni giorno il CO2 contenuto nell’atmosfera in carbonio fissato nel legno e in ossigeno. Le stime sono di 30 TW di potenza media: il triplo del fabbisogno mondiale. Allora basterebbe bruciare il legno che è un concentrato di energia solare! Per molti secoli questo è stato sufficiente ma oggi non è più così; il legno è mal distribuito, la sua raccolta faticosa, il suo potere calorico basso (2000 Cal/Kg contro le 10.000 Cal/Kg del gasolio).

Quindi si ricorre ad un trucco: il pianeta ha riserve strategiche! I processi di fotosintesi e biologici hanno convertito energia solare in carbonio e prodotti idrogenati; il tempo ha fatto il resto e noi oggi disponiamo di una riserva enorme di combustibili fossili: carbone, petrolio, metano che altro non sono che energia solare concentrata nelle ere geologiche passate.

immagine2

Scenario “medio” delle risorse di idrocarburi del pianeta per petrolio, gas e NGL (Natural Gas Liquid. Idati sono dell’US Geological Survey World Energy Assesment Team 2001.

 Il consumo annuo attuale è di circa 30miliardi di barili (ancora cento anni di petrolio?)

Che sia un trucco lo si capisce con un semplice ragionamento: la terra ha impiegato più di 100milioni di anni a costituire le attuali riserve; oggi i più ottimisti parlano di 1000 anni di riserve fossili ai ritmi attuali di consumo, e i più pessimisti di un centinaio tenendo conto dei tassi di espansione della domanda.

La scala dell’uomo

Tuttavia anche questo abuso contro-natura non basta e la sete di energia porta ad innescare un meccanismo assai instabile: si accetta che solo una percentuale limitata dell’umanità (circa il 15%) possa accedere alle fonti energetiche e se ne cerca comunque il controllo. Questo processo che oggi porta a conflitti economici, militari e a guerre è completamente insensato.

Mettiamoci in una logica tutta interna all’attuale sistema: oggi il mondo industrializzato (7-800milioni di persone) consuma 80milioni di barili di petrolio al giorno. (L’Irak ne produce solo 2 milioni, e tutto il medio oriente 25). Entro 20 anni Cina e India con i loro 2.5 miliardi di abitanti raggiungeranno un tenore di vita con un consumo energetico pari a un terzo del nostro ed una popolazione vicina ai 4 miliardi. E’ inevitabile che il consumo energetico raddoppi a meno di non pensare a distruzioni di massa su scala planetaria.

E allora a cosa serve un assetto più vantaggioso su scala mediorientale? Anche se si fosse in grado di controllare il Medio Oriente si scoprirebbe presto che il problema è un altro, che bisogna bloccare lo sviluppo dell’India, del continente africano etc. oppure, e non è mai troppo tardi, pensare al da farsi e imparare ad usare quello che il pianeta ci offre, senza distruzioni sistematiche e irreversibili delle risorse esistenti.

Le energie rinnovabili e alternative

Non facciamoci illusioni, non esistono soluzioni semplici. Le energie rinnovabili sono per ora poco più che uno slogan: per essere utilizzabili devono essere anche di basso costo, non inquinanti, e controllabili da chi le usa. Inoltre devono essere abbondanti: l’uomo non torna indietro e non rinuncia ai livelli di vita raggiunti anche se uno sforzo per razionalizzare i consumi sarà inevitabile.

Le tecniche di cattura delle energie rinnovabili si sono rivelate molto costose e finalizzate a consumi residuali di paesi altamente tecnologizzati: un esempio tipico sono i pannelli fotovoltaici che convertono direttamente energia solare in energia elettrica con una efficienza del 10%, un costo di circa 500 €/m2 e problemi di manutenzione non trascurabili.

Oggi si cerca di andare verso tecniche in cui si evidenziano gli aspetti economici, la fattibilità, la possibilità di usi anche in contesti economici “poveri”. Questo non significa poca tecnologia ma anzi una intensa ricerca di nuove soluzioni ed un uso più mirato delle risorse disponibili. Come esempio citiamo, tra le tante, tre linee di ricerca.

Vento: è la sola risorsa rinnovabile ad essere oggi competitiva per la produzione elettrica. Inoltre è una risorsa scalabile: gli impianti piccoli da 10 KW possono essere distribuiti e di costi accettabili, Ma anche i grandi impianti da 1 MW possono contribuire al bilancio energetico in paesi industrializzati grazie a economie di scala e un migliore sfruttamento del vento. Si può inoltre pensare di integrarli a sistemi di generazione e stoccaggio di idrogeno ed evolvere così verso tecnologie energetiche “pulite”.

Solare a concentrazione: c’è molto lavoro in questa direzione con idee e tecnologie innovative (vedi per esempio lo sforzo in corso recentemente in ENEA). L’obbiettivo è la produzione di calore ad alta temperatura a partire da specchi solari di basso costo, lo stoccaggio dell’energia termica con sali fusi, e poi la produzione di energia elettrica e/o idrogeno da usare come vettore energetico.

immagine4

Solar pond (stagno solare) E’ un sistema di bassa efficienza (20% soltanto di energia solare immagazzinata), bassa entalpia (salamoia a 90-95 C°), ma di bassissimo costo e adatto a zone ad alta insolazione e vicino al mare. Sono in fase di studio e sviluppo le applicazioni alla produzione d’acqua per dissalazione e l’uso di calore a bassa temperatura per culture batteriche in grado di produrre metano e/o idrogeno.

Parallelamente, e con un investimento di ricerca anche qui notevolissimo, si può investire nel nucleare: fissione e fusione.

La fissione fornisce oggi il 29.5% dell’energia elettrica in Europa (in Italia il 17% dell’energia elettrica è importata ed è pressoché interamente di fonte nucleare). Non basta: bisogna trovare il modo di renderla più sicura ed efficiente, bisogna gestire in modo razionale il problema delle scorie, bisogna sfruttare le risorse minerali (Uranio e Torio) in modo completo e ottimale.

immagine5

La fusione è una promessa Prometeica che l’uomo non ha ancora saputo raccogliere. Ma un giorno sarà possibile utilizzare le risorse potenzialmente disponibili nella conversione di idrogeno in elio.

Queste tecnologie rinnovabili e/o alternative sono solo un primo passo per capire le strade possibili da battere. E’ inutile nascondersi che oggi il petrolio muove interessi su una scala che si misura in centinaia di miliardi di € all’anno mentre i problemi delle energie rinnovabili sono affrontati con risorse mille volte inferiori.

Ma la realtà se ne infischia del sonno della ragione e il risveglio sarà comunque inevitabile.

Dove il pianeta prende e dove noi dovremo prendere l’energia del futuro. Nella foto una eruzione solare fotografata dal satellite Soho (la terra è sovrapposta in scala) .

(Dott. Marco Rosa-Clot, prof. di ruolo ordinario di Fisica, Università di Firenze)

PER LEGGERE IL CURRICUM DELL’ACCADEMICO MARCO-ROSA-CLOT CLICCARE SU:

mrcsh-it-1


Immagine clot